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Abstract: With the great economic and social
development witnessed by the Kurdistan Region of
Iraq, the demand for electrical energy has increased
significantly, causing an imbalance as the current
generation and distribution infrastructure struggles
to keep pace. The researchers aim to study and
address this issue by forecast peak demand to
support future planning in the sector to ensure
efficient electricity supply during peak times and
avoid overloading the network, using artificial
neural networks methods that are characterized by
their ability to learn and adapt to complex data and
traditional methods (Box-Jenkins method) known
for their accuracy in analysis. We will analyze the
time series data of monthly peak electricity demand
for ten years in the Kurdistan Region (January 2014
to July 2024) with a total of 127 observations.

The results of the Box-Jenkins method identified
the SARIMA (1,0,1)(0,1,1)12 model as the most
suitable for time series analysis, as it showed high
predictive accuracy and outperformed other models
in terms of RMSE, AIC and SBIC for forecasting
electricity demand increase, While the results of
the nonlinear autoregressive neural network
(NARNN) model, which was structured by
adjusting the hidden layer neurons and delay
numbers through trial and error, showed that the
optimal NARNN model (1:12,10) achieved the
lowest RMSE, MAE, MAPE, and R values when
compared to the other models tested.

When comparing the performance of the NAR
neural network with the SARIMA method, the
SARIMA  (1,0,1)(0,1,1)12 model  showed
superiority over the NAR neural network in terms
of accuracy, making it the better choice for
forecasting peak electricity consumption and
working to reduce the gap between demand and
production in the future.
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. Introduction

The demand for electricity has grown significantly to meet the
demands of the manufacturing, service and consumer sectors as a result of
the remarkable economic and social development in the Kurdistan Region of
Irag. Since energy is a major factor in development, effective planning and
management are essential. Accurate estimation of peak electricity
consumption is an essential part of energy management and electrical
infrastructure performance.
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This research aims to study this problem and forecast peak demand by use
SARIMA model and nonlinear neural regression networks (NARNN) in
order to support future planning in the sector to ensure efficient electricity
supply during peak times and avoid overloading the grid. This would help
improve grid efficiency and reduce operating expenses.

Time series analysis is a valuable method for understanding and
extracting insights from sequential data collected over time, across various
fields such as finance, economics, signal processing, and environmental
research. While multiple models exist for time series forecasting, spectral
analysis and the autoregressive integrated moving average (ARIMA) model
proposed by Box and Jenkins are the most widely used. ARIMA models
offer flexibility in linear modeling, but their limitations can be addressed by
artificial neural networks (ANNSs). (Box, Jenkins, Reinsel, & Ljung, 2015)
(Brockwell & Davis, 2002) (Kadir, 2020)

ANNSs are powerful tools for time series forecasting due to their
strength in handling nonlinear patterns. These networks are composed of
interconnected nodes organized in layers, resembling artificial neurons. The
structure includes input, hidden, and output layers. Connections between
these neurons are assigned weights, and the network learns by adjusting these
weights based on input data. This makes ANNs particularly effective for
working with non-stationary time series data (Zhang & Qi, 2005)
(Mahmood, 2016).

The results obtained from using SARIMA and NARNN models were
very effective, with the Box-Jenkins time series analysis model
outperforming the NARNN model and being used for electricity demand
forecasting.

. Material and Methodology: The ARIMA forecasting model setup involves
three main steps: model identification, model parameter estimation, and
diagnostic confirmation. The initial phase involves analyzing data to
determine the appropriate class of ARIMA processes, determining the
sequence of autoregressive and moving average polynomials and the order
of consecutive and seasonal differencing.

2-1. Time series: A time series is a set of apparent values arranged over time,
such as annual, quarterly, monthly, or daily. It can be analyzed to understand
changes in the phenomenon's value over time. There are two types of
changes: general changes over the long term and seasonal trends. Periodicity
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is determined by developments, economic and political factors, and
occasional changes, other random or systematic fluctuations (Allende,
Moraga, & Salas, 2002).

Components of Time Series: Time series data can be decomposed into
four main components, which are essential for understanding its underlying
structure (Sarhan, 2018): Long-term movements in the mean are referred to
as a trend (Tt). Seasonal effects (It), or calendar-related cyclical changes,
Cycles (Ct): other cyclical fluctuations (such as business cycles), and the
value of the irregular component (Residuals), other random or systematic
fluctuations (Shumway & Stoffer, 2006).

Zy =T, +S;+ Co+ 1 .. (1)

2-1-1. Stationary Time Series: A stationary time series is a series of time
data whose statistics between different time periods are stationary and
unchanged with time, this means that the time-homogeneous series,
(Koenecke, 2020), sometimes it is similar to plotting a series in period
{t,t+h} where we can say that the series is stationary and its properties do
not change over time. In other words, a time series is "stationary" if the mean,
variance, and autocovariance meet the following conditions: {s,s+h} (Yaffee
& Mcgee, 2000):

u(t) =E(Z,) t=12,....n E(Z,) is the expected value of the random

variable X; , and (t) is the expected value (or mean)
Var (Z,) = E(Z, — ©)®>  The variance of the process Z; remains constant

over time, indicating that the variability of the data points does not change.
The covariance function measures the relationship between values at
different points in time for a given time series, Wheret =1, 2,..n & h=1,
2,.,n—t

y(&, t+h) = Cov(Z, + ) = E[Z; — pte) * (Zean — Lewn)]

The correlation function can detect non-stationarity in a time series
when its coefficients remain high over different time periods, indicating that
the values of the autocorrelation function are not yet zero (Zhang, Time
series forecasting using a hybrid ARIMA and neural netwotk model, 2003) .

462


http://www.doi.org/10.25130/tjaes.21.70.1.24

Tikrit Journal of Administrative and Economic Sciences, Vol. 21, No. 70, Part (1): 459-478
Doi: www.doi.org/10.25130/tjaes.21.70.1.24

2-1-2. Types of Box-Jenkins Models:
. Autoregressive of order (P) Model
Autoregressive models arise when the current value of the series is a function
of its value in previous periods, in addition to some errors. If Z, is the time
series' current value and (Z,—1, Z;—9, ..., Z;—,,) are its values from earlier
periods, and we discover that Z, depends on or is impacted by its earlier
values, we may characterize this relationship using an autoregressive model
of order p Written AR(P) if (Sarhan, 2018).

Ly = @1lpq + @l + o T QL toE (2)
Where: ( e;) Independent random variables follow a normal distribution with
zero mean and variance 2. {¢@;, @5, ..., @, } are unknown parameters.

. Moving Average Model of order (q)
The current observation Z; can be expressed as a linear function of the

current random change at a; and the previous random change at (e;—1, €

,...) then the resulting process is called a moving average (MA) process of
order g and it is formulated as follows (Tsay, 2005)
Zy = e, — b1 — Orepp— =0

Where: { 64,65, ...,6,} are unknown parameters. {e; }white noise purely

random variable

. Mixed Autoregressive Moving Average Models: The autoregression and
moving average procedure can be described using the ARMA (p, gq) model,
where higher-order combinations are represented as ARMA. Here, p refers
to the order of the autoregressive component, and q denotes the order of the
moving average component. ( Brockwell & Davis, 2002)

Z'E' = leXf—l + -+ ijXf—p + e'f,' - Blet_l - aqet_q T (‘:1“}
@(B)Z; = 9(B)e; ......(5)
Where: @(B) =1 — @B — @,B? — -+ — @pBY | is (AR) polynomial

9(B) = 1+ U9,B +9,B* + -+ 9,B? | is (MA) polynomial

The AR component uses past values of the series to predict future values,
while the MA component uses past errors to predict future values. The
ARIMA (p, d, q) model extends ARMA to handle non-stationary data by
applying differencing (d) to the series before fitting the ARMA model.

@(B)(1—B)?Z, = 9(B)e; .....(6)
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. SARMA (Seasonal Autoregressive Moving Average) Model; A non-
seasonal model is sometimes combined with seasonal models to create a
suitable representation, referred to as ARMA (p, q)(P, Q).

¢p(B*)@p(B)Zy = 69 (B*)0,(B)e; ... (7)

The SARMA model is extended to handle non-stationary data by
applying differential (d) to the previous series, thus combining the seasonal
and non-seasonal components and adding differentials to both, which is
represented by ARIMA (p, d, q) (P, D, Q). The operator for this model is
created using the forward shift operator (Zhang,2003) (Kadir, 2020).
$p(B*)pp(B)(1 — B)? (1~ B)PZ, = 6(B*)94(B)e; .......(8)

2-1-3. Stages of building the model: The Box-Jenkins method for building
time series models involves four steps (Ahmed & Mahmood, 2023):

. Identification: This involves using autocorrelation functions and partial
autocorrelation functions to determine the appropriate ARMA model.

. Estimation: Once the model is identified, its parameters are estimated using
methods like maximum likelihood, least squares, or Yule-Walker.

. Diagnostic: The model's validity is checked by analyzing residuals,
adjusting parameters, and comparing criteria.

. Forecasting: The model is used to forecast the time series' future values.
2-2. Artificial Neural Networks: Neural networks are a form of artificial
intelligence designed to simulate the workings of the human brain, enabling
tasks such as sorting, comparing, and predicting without relying on a specific
data model. Researchers are exploring their flexibility and performance in
comparison to statistical methods. Researchers compare these networks to
statistical methods ( Bishop, 1995) (Fausett, 1994).

The term “artificial neural networks" is derived from the idea of
replicating the neural structure of the brain. Living organisms are often
described as biological computers, electronic brains, analogous systems, or
models of connectivity and parallelism. Technically, some researchers aim
to replicate the cognitive abilities of the brain, using learning and trial-and-
error techniques to achieve human-level problem solving. They use non-
algorithmic methods to solve incomplete problems and work with noisy data
(Fausett, 1994) ( Bishop, 1995).

2-2-1. Artificial Neural Networks Architecture: Neural networks are
made up of neurons, which are interconnected processing units. The structure
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and function of these neurons is determined by their organization, or network
architecture. Regardless of the input data, this architecture is fixed and
computation-free (Fausett, 1994).

Three layers usually make up a neural network: the input layer
receives data, the hidden layer processes it, and the output layer generates
the results. Each layer contains nodes, which serve as connection points, and
levels, which are groups of nodes that receive inputs and generate outputs.
The strength of the connections between layers is represented by weights.
(Fausett, 1994) (Mahmood & Ahmed,2023)

A neuron consists of four components: weighting coefficients, a
summation function, a transfer function, and an output function. Its
operations include receiving input signals, modifying them, summing the
inputs, using the activation function to generate the output, and passing the
result either to other neurons or as the final output of the network.

The architecture of a neural network describes how its units and
connections are structured. There are two primary types: feedforward neural
networks (FFNN) and feedback neural networks. In FFNN data moves in
one direction, while in feedback networks, information can flow in both
directions; these basic architectures form the basis for more specialized
architectures such as NAR neural network, convolutional neural networks
(CNNs) and competitive generative neural networks (GANSs). Neural
networks are also categorized as either single-layer or multi-layer
(Galushkin, 2007).

Neural networks can be single-layer or multilayer. Multilayer
perceptrons (MLPs) were initially introduced to address complex
classification challenges. However, due to their global approximation
property, they quickly became widely used as nonlinear regression models
and later for time series modeling and forecasting. Despite their versatility,
estimating and specifying these models requires advanced techniques, and
identifying the correct structure is not easy. By nature, these models are over-
parameterized, and their minimization error functions often have many local
minima, and their implementation can be very difficult (Fausett, 1994)
(Galushkin, 2007).

2-2-2. Nonlinear autoregressive (NAR) neural network: The NAR neural
network is a powerful feed-forward network model that excels at identifying
patterns and nonlinear features in time series data. It works as a dynamic
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network, where connections that span its layers, meaning the current output
Is influenced by previous output value y(t - 1), y(t - 2), ..., y(t- d). The NAR
network is capable of effectively forecasting time series and can be
represented in the following manner (Benrhmach, Namir, Namir, &
Bouyaghroumni, 2020) (Ali, Mahmood, & Wahdi, 2022):

yO =fyt-D+yt—-2)++yt—d)+e) ... (9)

Where, y represents the combined interference values from N-1

interferers. The function f(-) is a nonlinear function that can be approximated
using a neural network. The variable d represents the time delay for the
interference time series and €, represents the error between the predicted and
actual values. This equation shows how the predicted value at time t depends
on the past values of the time series (Taherdangkoo, Tatomir, Taherdangkoo,
Qiu, & Sauter, 2020).
2-2-3. Network Architecture: The NAR network used is a feed-forward
neural network consisting of three layers: the input layer, the hidden layer,
and the output layer (Figure 1). The sigmoid function, a continuous nonlinear
function, is the most commonly used activation function in neural network
design with backpropagation training. The hidden layer uses a logistic
sigmoid activation function, while the output layer uses a linear function.
The optimal number of time delays and hidden nodes can often be
determined by trial and error (Ratur & Sargsyan, 2018).

Input layer Hidden layer Output layer

y(t)

Figure (1): The architecture of the NAR model
Thus, the NAR neural network is specifically defined by an equation
of the following form:
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k

24
y(t) = ag +Z¢Tj‘3( BijVe—i +30j)+5t e (10)
j=1 i=1

The NAR network’s architecture equation (10) includes: a: The
number of data points, k: The number of hidden layers, @: The activation
function used in the hidden layers, ij: The weights connecting input units to
hidden units. a;: The weights connecting hidden units to the output unit, Bo;
and oo: Bias value of hidden units and output unit.

The optimization of the architecture focuses on minimizing the
number of synapses (weights) and neurons to decrease the network's
complexity, enhance computation times, and preserve generalization
capabilities. Two primary approaches to optimizing network architecture
have been proposed in the literature:

Selection Approach: This method begins with the construction of a
complex network containing a large number of neurons. The goal is to reduce
the number of unnecessary neurons and eliminate redundant connections
either during or after the learning process.

Incremental Approach: This strategy starts with the simplest possible
network and progressively adds neurons or layers until an optimal
architecture is achieved.

An effective strategy for assessing prediction error involves using a
dataset that was not employed in building the predictor, known as the test
set. The dataset can be divided into three types of target time steps:
Training Set: These datasets are presented to the network during training,
allowing adjustments based on the network's errors.

Validation Set: These datasets are used to evaluate the network's
generalization capabilities and to stop training when further improvements
in generalization cease.

Testing Set: These datasets do not influence the training process and
provide an independent assessment of the network's performance both during
and after training.
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Evaluation Criteria: Using a set of standard statistical metrics, we assessed
the predictive models' accuracy. These metrics include (Benrhmach, Namir,
Namir, & Bouyaghroumni, 2020):

Mean Absolute Error (MAE): Expresses the average difference between
actual and predicted values, and provides an indication of how close the
predictions are to reality.

Root Mean Square Error (RMSE): Gives greater weight to large errors, and
provides a more accurate estimate of overall model performance.
Correlation Coefficient (R): Measures the strength of the linear relationship
between predicted and actual values, and indicates how similar the direction
of changes in the data is.

Selecting the best model: We applied the Bayesian Information Criterion
(BIC) and the Akaike Information Criterion (AIC) to determine the best
model among the options. (Allende, Moraga, & Salas, 2002)

. Results In this research, we will use artificial neural networks to analyze the
monthly time series data of electricity peak demand in the Kurdistan Region.
We will compare the results of the neural networks with the traditional Box-
Jenkins methodology.

The data analyzed in this study represents the average monthly peak
electricity demand in megawatts (MW) for the Kurdistan Region. The data
covers a period of five years, from January 1, 2014, to July 2024, totaling
127 observations. The data was obtained from the Kurdistan Region's
Ministry of Electricity and analyzed using Statgraphics V.17 and
Matlab(R2022D).

3-1. Analysis of the Time Series: We created a visual representation of the
time series data prior to the analysis, the time series data shows the peak
demand for electricity in the Kurdistan Region. The data exhibits a general
trend and cyclical patterns, with spikes that occur regularly and increase over
time. These patterns indicate a combination of a general trend and
seasonality, as well as a degree of instability in the series.
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Figure (2): Original data plot peak electricity demand in Kurdistan Region
For greater accuracy, we draw both the autocorrelation function and the
partial autocorrelation function, as in figure (3)

Autocorrelations

26

A: Estimated Autocorrelations

Figure (3): ACF & PACEF for the original electricity data

Partial Auto correlations

B: Estimated Partial Autocorrelations

I....ln

_Il =

Figure 3 shows that many of the autocorrelation coefficients (ACF)
and the partial autocorrelation function (PACF) fall outside the confidence
limits at the 95% level, which is an indication of the non-stationarity of the
time series. This can be confirmed by the Augmented Dickey-Fuller (ADF)
test, which is one of the most important unit root tests, to prove the
stationarity of the series or not, as shown in the results of Table 1, as its value
Is equal to (-2.74) and value (0.0713), and therefore the null hypothesis
cannot be rejected and indicates the non-stationarity of the time series.
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Null hypothesis: There is a unit root in the data.
Alternative hypothesis: There is no unit root in the data.
Table (1): Results of Augmented Dickey-Fuller test for the original series
Test p-value Critical Null
Statistics Value Rejected

Before Differencing -2.74 0.0713 -2.580 False
After Differencing -14.98 0.000 -2.587 True

To make the time series stationary, we applied several seasonal and
non-seasonal differences, which is essential for preparing the data for
modeling. We found that a first seasonal difference (d = 1) effectively
stationary the series during peak electricity demand periods, making the data
more suitable for the SARIMA model, where stationary is crucial. This was
confirmed by the ADF test as shown in Table (1), where the absolute test
statistic (14.98) and the p value (0.000) was less than 0.05. To further verify
the stationarity, we will conduct ACF and PACF tests on different time series
Figure3.

A: Estimated Autocorrelations B: Estimated Partial Autocorrelations

0.6

05}

0.6

02k ]

M_:l . Illl___ Iul

0.6

Autocorrelations
Partial Autocorrelations

Figure (3): Adjusted ACF and PACF after first seasonal differences
To select the optimal SARIMA model, we analyzed several well-known
models in Table 2. This requires experience in time series analysis. We
evaluated the models based on their performance (RMSE, AIC, and SBIC)
and selected the model that achieved the best overall results. It is SARIMA
(1,0,1) (0,1,1)12. This model has the lowest values for the comparison criteria
compared to the other models.
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Table (2): Proposed models with significant estimates

Model RMSE | AIC | SBIC |Sig. Parameters
SARIMA (1,0,1) (0,1,1);, {393.303|11.996 | 12.064 Yes
SARIMA (1,0,1) (1,1,1);, | 394.902|12.020 | 12.109 No
SARIMA (1,0,1) (1,0,1);, [401.583|12.054 | 12.143 No
SARIMA (1,0,0) (1,1,1);, | 438.297|12.213 | 12.280 No
SARIMA (1,0,0) (0,1,1);, |441.973|12.214 | 12.259 No

We estimated the parameters of this model and selected the best estimation

method in Table 3.

Table (3): Estimated Parameters Values of the
SARIMA (1,0, 1) (0,1,1)12 Model

Parameter | Estimate [Standard Error t P-value
AR(1) 0.99998 0.0040 252.075| 0.00
MA(1) 0.8058 0.0546 14.7636 | 0.00
SMA(1) 0.756 0.0593 12.7579 | 0.00

Moreover, we can express the previous model's form as follows:
(1-0.99998B) Yt=(1+0.8058B)(1-B*?)(1-0.7556B*?)et

Model Evaluation: Once we have identified and estimated the candidate
SARIMA (1,0,1) (0,1,1) 12 models, we need to evaluate how well it fits the
data. This involves checking both the model parameters and the residuals.
To assess the model's suitability, we conducted a diagnostic check of the
residuals for the SARIMA (1,0,1) (0,1,1)1, model. We used ACF and PACF
plots to analyze the residuals, as shown in Figure 6.

A: Estimated Autocorrelations for residuals B: Estimated Partial Autocorrelations for residuals

1F T T T T ] 1F T T T T ]

0.6 - ] 06 _

elations
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0.2 ]

Autocorrelations
]
||
]
1
|
|

Partial Autocorr

0.6~ ] 06+ _

-1 Co 1 1 1 I 17 -1 1 L 1 1 I _-
20 2 0 5 10 15 20

Figure (4): ACF and PACF of residual model
We found that all the ACF and PACF values of the residuals were
within the confidence limits, further supporting the conclusion that the

residuals are random and the model is appropriate.

L ————————————————
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We checked for autocorrelation in the residuals using the Box-Pierce
test to make sure the model fit. The test yielded a p-value of 0.821767, which
Is greater than 0.05. This indicates that there is no significant autocorrelation
in the residuals, confirming that the model is appropriate and effective.
Forecasting: Forecasting peak demand and managing seasonal loads are
crucial for optimizing electrical grids, reducing costs, and promoting
sustainable energy practices. By accurately forecasting peak demand,
utilities can make informed decisions to optimize energy generation,
distribution, and consumption.

The next step, after diagnosing and selecting the most suitable model, marks
the conclusion of the time series analysis modeling.
Table (4): The forecasted monthly peak electricity demand

8/2024 5276.9 4389.36 6614.36
9/2024 4895.03 4109.76 6051.29
10/2024 | 4174.97 3580.89 5005.38
11/2024 | 6348.82 5052.1 8541.06
12/2024 | 7246.93 5583.58 10321.8
1/2025 7893.4 5936.02 11776.7
2/2025 7641.16 5770.26 11307.4
3/2025 6790.35 5253.55 9598.02
4/2025 5556.19 4470.34 7338.8
5/2025 4630.01 3841.31 5826.27
6/2025 5229.57 4233.96 6837.38
7/2025 5524.47 4413.27 7383.55
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Figure (5): Forecasting using SARIMA (1,0,1) (0,1,1)1, model from 8/2025
to 7/2025
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3-2. Application of NAR Neural Network: Study and analysis of peak
electricity demand using NAR NN model with the data collected for this
study from 127 observations, divided as follows: 70% of the observations,
which equals 89 observations, as the training set, and 15%, which equals 19
observations for both the validation set and the test set.

The prediction process starts by defining an input layer which is a
single neuron representing the monthly time series of peak electricity
demand. Determining the number of delays (lags) and hidden nodes, since
the time series is seasonal and the PACF reveals large spikes in seasonal
delays, this indicates the presence of seasonal dependencies at these points.
As shown in Figure (3) and from the previous data analysis, both regular and
seasonal delays will be taken into account when selecting the inputs for the
neural network. Given the importance at delay (lags) 12, the preferred
number of delays is 12. However, through the trial and error process, we
confirmed this aspect. We conducted multiple experiments on peak power
demand, varying the number of neurons in the hidden layer from 1 to 10 in
each experiment, and varying the number of delays from 1 to 15. Finally, we
determined the best NAR neural network model (1:12,10) which is a single
input model with 12 delays and 10 hidden neurons, and some of the results
are shown in Table5. Forecasting peak demand and managing seasonal loads
are crucial for optimizing electrical grids, reducing costs, and promoting
sustainable energy practices. By accurately forecasting peak demand,
utilities can make informed decisions to optimize energy generation,
distribution, and consumption.

Table (5): Comparisons results for the NAR neural network

ID | Architecture | RMS MAE |MAPE| R
1 (1:12,1) 7747.99 | 407.15 | 985.28 | 0.896
2 (1:12,2) 17129 | 374.43 | 911.08 | 0.884
3 (1:12.3) 1243.76 | 360.76 | 880.62 | 0.900
4 (1:12,4) 1351.01 | 386.34 | 940.98 | 0.880
5 (1:12,5) 1521.17 | 335.63 | 800.95 | 0.910
6 (1:12,6) 1360.53 | 337.36 | 805.78 | 0.908
7 (1:12,7) 144759 | 329.42 | 799.98 | 0.908
8 (1:12,8) 1232.21 | 371.64 | 906.64 | 0.891
9 (1:12,9) 1819.88 | 361.59 | 880.86 | 0.895
10| (1:12,10) |1356.72| 315.07 | 764.79 | 0.918
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From Table (5), we note that the best structure for the NAR neural network
Is (1:12,10) as can be seen in Figure 6, according to the criteria (RMS,

MAE, MAPE, R).
Hidden Layer with Delays Qutput Layer
| Y
/ / w
_— S 1

10 1

Figure (6): NAR Neural Network optimal architecture

Nonlinear autoregressive neural network training regression
Figure 7: shows the regression plot for the training, validation, and testing
sets combined. The lines in each quadrant represent the model's predictions
compared to the actual values. The closer the lines are to the diagonal line,
the better the model's performance.

The correlation coefficient (R) measures the strength of the
relationship between the predicted values and the actual values. A value
closer to 1 indicates a stronger relationship.
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Figure (7): Regression plots showing NAR NN (1:12,10) for electricity
demand
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Error histogram and error autocorrelation function: Figure 13 shows the
error histogram and error autocorrelation function to evaluate the suitability
of the network to the training process for the four models.

Error Histogram with 20 Bins i Autocorelaton o Etor 1

951 I T1ining

[ Vaiidation [ Coreltins
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Zero Error

Confidence Lt

~
=

Instances

Correlation
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Figure (8): Shows the histogram of errors and the autocorrelation function
of the error

Figure 8 reveals that the model's error histogram accurately represents
the residuals. As the network trains, the errors between the target values and
the expected values decrease and become symmetrical with respect to the
zero axes, indicating a normal distribution and appropriate training of the
network. Additionally, the error autocorrelation function verifies that all
errors remain uncorrelated and fall within the 95% confidence interval
around zero. This indicates the network's learning quality and its capacity to
forecast the demand for electrical energy on a monthly basis using a daily
time series, as evidenced by the correlation coefficient's value being close to
one.
Nonlinear autoregressive Training Time-Series Response: Figure 4
presents the time-series response plot for the validated instances using the
NAR neural network. It also highlights the time intervals allocated for the
testing, validation, and training phases. Based on the test results, the NAR
neural network model is identified as (1:12, 10). The plot demonstrates the
consistent distribution of the response curve's outputs throughout the
training, testing, and validation processes. Additionally, the accompanying
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autocorrelation function plot supports this, as all its values fall within the
acceptable range.
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Figure (9): The Time-Series Response for the NARNN (1:12,10) Model
Comparison SARIMA model and NAR neural network: In order to
choose the most appropriate model for predicting electrical energy demand,
we compared the SARIMA model and NAR neural network based on
statistical criteria (MAE, RMSE, and MAPE), and Table 6 shows the
comparison results.

Table (6): Comparison between (SARIMA and NARNN) Models for
prediction Peak Demand Electricity

Models RMSE MAE MAPE
SARIMA (0,1,1) (0,1,1)12 |  393. 30 279.99 5.72
(NAR NN)(1:12,10) 1356.72 315.07 | 764.79

Based on the results, the SARIMA (1,0,1) (0,1,1) model outperforms the
NAR (1:12,10) model in terms of the three statistical criteria. This indicates
that the SARIMA model provides more accurate predictions.

. Conclusion: Based on the results, the following is a summary of the most
important conclusions obtained from this study:

. Using the Box-Jenkins method for time series analysis, the SARIMA (1,0,1)
(0,1,1)12 model was identified as the most suitable model. This model
demonstrated strong predictive power after comparing it to other models and
evaluating its performance using criteria like RMSE, AIC, and SBIC.
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. Nonlinear autoregressive neural networks were used to predict the increase

in electricity demand. By experimenting with different numbers of hidden
nodes and time delays, the NAR NN (1:12,10) model was found to be the
best fit for the data. This model achieved the lowest values for statistical
criteria (RMSE, MAE, and MAPE).

. We evaluated the performance of the NAR neural network and the traditional

Box-Jenkins (SARIMA) method by comparing their results using statistical
criteria (RMSE, MAE, MAPE). The SARIMA (1,0,1) model showed the
lowest values for these metrics, making it the most accurate model for
forecasting peak electricity consumption and highly effective for forecasting.
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