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Abstract: With the great economic and social 

development witnessed by the Kurdistan Region of 

Iraq, the demand for electrical energy has increased 

significantly, causing an imbalance as the current 

generation and distribution infrastructure struggles 

to keep pace. The researchers aim to study and 

address this issue by forecast peak demand to 

support future planning in the sector to ensure 

efficient electricity supply during peak times and 

avoid overloading the network, using artificial 

neural networks methods that are characterized by 

their ability to learn and adapt to complex data and 

traditional methods (Box-Jenkins method) known 

for their accuracy in analysis. We will analyze the 

time series data of monthly peak electricity demand 

for ten years in the Kurdistan Region (January 2014 

to July 2024) with a total of 127 observations. 

The results of the Box-Jenkins method identified 

the SARIMA (1,0,1)(0,1,1)12 model as the most 

suitable for time series analysis, as it showed high 

predictive accuracy and outperformed other models 

in terms of RMSE, AIC and SBIC for forecasting 

electricity demand increase, While the results of 

the nonlinear autoregressive neural network 

(NARNN) model, which was structured by 

adjusting the hidden layer neurons and delay 

numbers through trial and error, showed that the 

optimal NARNN model (1:12,10) achieved the 

lowest RMSE, MAE, MAPE, and R values when 

compared to the other models tested. 

When comparing the performance of the NAR 

neural network with the SARIMA method, the 

SARIMA (1,0,1)(0,1,1)12 model showed 

superiority over the NAR neural network in terms 

of accuracy, making it the better choice for 

forecasting peak electricity consumption and 

working to reduce the gap between demand and 

production in the future. 
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 لتوقع الطلب على SARIMAالشبكة العصبية غير الخطية الانحدارية ونموذج 

 ذروة الكهرباء في إقليم كردستان
 

 سامان حسين محمود  يلدا هدى قرداغ

 اربيل -جامعة صلاح الدين كلية الإدارة والاقتصاد/

 مستخلصال

شهده اقليم كردستان العراق، ازداد الطلب يمع التطور الاقتصادي والاجتماعي الكبير الذي   

تكافح البنية التحتية الحالية  حيث التوازن، على الطاقة الكهربائية بشكل كبير، مما تسبب في اختلال

للتوليد والتوزيع لمواكبة الطلب. يهدف الباحثون إلى دراسة ومعالجة هذه القضية من خلال التنبؤ 

بذروة الطلب لدعم التخطيط المستقبلي في القطاع لضمان إمداد فعال بالكهرباء خلال أوقات الذروة 

ناعية التي تتميز وتجنب التحميل الزائد على الشبكة، باستخدام أساليب الشبكات العصبية الاصط

جينكينز( -بقدرتها على التعلم والتكيف مع البيانات المعقدة والأساليب التقليدية )طريقة بوكس

المعروفة بدقتها في التحليل. سوف نقوم بتحليل بيانات السلسلة الزمنية للطلب الشهري على الكهرباء 

 ملاحظة. 127( بإجمالي 2024إلى يوليو  2014لمدة عشر سنوات في اقليم كردستان )يناير 

هو  SARIMA (1,0,1) (0,1,1)12 جينكينز أن نموذج-أظهرت نتائج طريقة بوكس  

الأنسب لتحليل السلاسل الزمنية، حيث أظهرت دقة تنبؤية عالية وتفوقها على النماذج الأخرى من 

نموذج  في التنبؤ بزيادة الطلب على الكهرباء. بينما أظهرت نتائج (SBICو RMSE، AIC) حيث

، الذي تم هيكلته عن طريق ضبط عدد (NAR) الشبكة العصبية الذاتية الانحدار غير الخطية

 NAR العصبونات في الطبقة المخفية وأعداد التأخير من خلال التجربة والخطأ، أن النموذج الأمثل

مقارنة بالنماذج الأخرى التي تم  RMSE،MAE ،MAPE  ،(R)ـ حقق أدنى قيم ل (10 ,1:12)

 .اختبارها

وذج ـ، أظهر نمSARIMAمع طريقة  NARعند مقارنة أداء الشبكة العصبية   

12(0,1,1) SARIMA (1,0,1)  تفوقاً على الشبكة العصبيةNAR  من حيث الدقة، مما يجعلها

ة بين الطلب والإنتاج في الخيار الأفضل للتنبؤ باستهلاك الذروة للكهرباء والعمل على تقليص الفجو

 المستقبل.

 .، التنبؤ، ذروة الطلب على الكهرباءNN NAR ،SARIMAالسلاسل الزمنية،  ت المفتاحية:الكلما

  المقدمة

1. Introduction 

  The demand for electricity has grown significantly to meet the 

demands of the manufacturing, service and consumer sectors as a result of 

the remarkable economic and social development in the Kurdistan Region of 

Iraq. Since energy is a major factor in development, effective planning and 

management are essential. Accurate estimation of peak electricity 

consumption is an essential part of energy management and electrical 

infrastructure performance.  
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This research aims to study this problem and forecast peak demand by use 

SARIMA model and nonlinear neural regression networks (NARNN) in 

order to support future planning in the sector to ensure efficient electricity 

supply during peak times and avoid overloading the grid. This would help 

improve grid efficiency and reduce operating expenses. 

  Time series analysis is a valuable method for understanding and 

extracting insights from sequential data collected over time, across various 

fields such as finance, economics, signal processing, and environmental 

research. While multiple models exist for time series forecasting, spectral 

analysis and the autoregressive integrated moving average (ARIMA) model 

proposed by Box and Jenkins are the most widely used. ARIMA models 

offer flexibility in linear modeling, but their limitations can be addressed by 

artificial neural networks (ANNs). (Box, Jenkins, Reinsel, & Ljung, 2015) 

(Brockwell & Davis, 2002) (Kadir, 2020) 

  ANNs are powerful tools for time series forecasting due to their 

strength in handling nonlinear patterns. These networks are composed of 

interconnected nodes organized in layers, resembling artificial neurons. The 

structure includes input, hidden, and output layers. Connections between 

these neurons are assigned weights, and the network learns by adjusting these 

weights based on input data. This makes ANNs particularly effective for 

working with non-stationary time series data (Zhang & Qi, 2005) 

(Mahmood, 2016). 

  The results obtained from using SARIMA and NARNN models were 

very effective, with the Box-Jenkins time series analysis model 

outperforming the NARNN model and being used for electricity demand 

forecasting. 

2. Material and Methodology: The ARIMA forecasting model setup involves 

three main steps: model identification, model parameter estimation, and 

diagnostic confirmation. The initial phase involves analyzing data to 

determine the appropriate class of ARIMA processes, determining the 

sequence of autoregressive and moving average polynomials and the order 

of consecutive and seasonal differencing. 

2-1. Time series: A time series is a set of apparent values arranged over time, 

such as annual, quarterly, monthly, or daily. It can be analyzed to understand 

changes in the phenomenon's value over time. There are two types of 

changes: general changes over the long term and seasonal trends. Periodicity 

http://www.doi.org/10.25130/tjaes.21.70.1.24
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is determined by developments, economic and political factors, and 

occasional changes, other random or systematic fluctuations (Allende, 

Moraga, & Salas, 2002).  

  Components of Time Series: Time series data can be decomposed into 

four main components, which are essential for understanding its underlying 

structure (Sarhan, 2018): Long-term movements in the mean are referred to 

as a trend (Tt). Seasonal effects (It), or calendar-related cyclical changes, 

Cycles (Ct): other cyclical fluctuations (such as business cycles), and the 

value of the irregular component (Residuals), other random or systematic 

fluctuations (Shumway & Stoffer, 2006). 

                

2-1-1. Stationary Time Series: A stationary time series is a series of time 

data whose statistics between different time periods are stationary and 

unchanged with time, this means that the time-homogeneous series, 

(Koenecke, 2020), sometimes it is similar to plotting a series in period 

{t,t+h} where we can say that the series is stationary and its properties do 

not change over time. In other words, a time series is "stationary" if the mean, 

variance, and autocovariance meet the following conditions: {s,s+h} (Yaffee 

& Mcgee, 2000): 

 t = 1,2,…..,n    is the expected value of the random 

variable     , and μ(t) is the expected value (or mean)      

     The variance of the process Zt remains constant 

over time, indicating that the variability of the data points does not change.                               

The covariance function measures the relationship between values at 

different points in time for a given time series, Where t =1, 2,...,n & h = 1, 

2,.., n – t 

 
  The correlation function can detect non-stationarity in a time series 

when its coefficients remain high over different time periods, indicating that 

the values of the autocorrelation function are not yet zero (Zhang, Time 

series forecasting using a hybrid ARIMA and neural netwotk model, 2003) . 
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2-1-2. Types of Box-Jenkins Models: 

1. Autoregressive of order (P) Model 

Autoregressive models arise when the current value of the series is a function 

of its value in previous periods, in addition to some errors. If  is the time 

series' current value and ( , are its values from earlier 

periods, and we discover that  depends on or is impacted by its earlier 

values, we may characterize this relationship using an autoregressive model 

of order p Written AR(P) if (Sarhan, 2018).  

       

Where: ( ) Independent random variables follow a normal distribution with 

zero mean and variance . {  are unknown parameters. 

2. Moving Average Model of order (q)  

The current observation  can be expressed as a linear function of the 

current random change at  and the previous random change at 

,…) then the resulting process is called a moving average (MA) process of 

order q and it is formulated as follows (Tsay, 2005) 
                      

Where: {  are unknown parameters. white noise purely 

random variable 

3. Mixed Autoregressive Moving Average Models: The autoregression and 

moving average procedure can be described using the ARMA (p, q) model, 

where higher-order combinations are represented as ARMA. Here, p refers 

to the order of the autoregressive component, and q denotes the order of the 

moving average component. ( Brockwell & Davis, 2002) 

    

Where:    , is  (AR) polynomial 

  , is (MA) polynomial 

The AR component uses past values of the series to predict future values, 

while the MA component uses past errors to predict future values. The 

ARIMA (p, d, q) model extends ARMA to handle non-stationary data by 

applying differencing (d) to the series before fitting the ARMA model. 
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4. SARMA (Seasonal Autoregressive Moving Average) Model; A non-

seasonal model is sometimes combined with seasonal models to create a 

suitable representation, referred to as ARMA (p, q)(P, Q).  
   

  The SARMA model is extended to handle non-stationary data by 

applying differential (d) to the previous series, thus combining the seasonal 

and non-seasonal components and adding differentials to both, which is 

represented by ARIMA (p, d, q) (P, D, Q). The operator for this model is 

created using the forward shift operator (Zhang,2003) (Kadir, 2020). 
  

2-1-3. Stages of building the model: The Box-Jenkins method for building 

time series models involves four steps (Ahmed & Mahmood, 2023): 

1. Identification: This involves using autocorrelation functions and partial 

autocorrelation functions to determine the appropriate ARMA model. 

2. Estimation: Once the model is identified, its parameters are estimated using 

methods like maximum likelihood, least squares, or Yule-Walker. 

3. Diagnostic: The model's validity is checked by analyzing residuals, 

adjusting parameters, and comparing criteria. 

4. Forecasting: The model is used to forecast the time series' future values. 

2-2. Artificial Neural Networks: Neural networks are a form of artificial 

intelligence designed to simulate the workings of the human brain, enabling 

tasks such as sorting, comparing, and predicting without relying on a specific 

data model. Researchers are exploring their flexibility and performance in 

comparison to statistical methods. Researchers compare these networks to 

statistical methods ( Bishop, 1995) (Fausett, 1994). 

  The term "artificial neural networks" is derived from the idea of 

replicating the neural structure of the brain. Living organisms are often 

described as biological computers, electronic brains, analogous systems, or 

models of connectivity and parallelism. Technically, some researchers aim 

to replicate the cognitive abilities of the brain, using learning and trial-and-

error techniques to achieve human-level problem solving. They use non-

algorithmic methods to solve incomplete problems and work with noisy data 

(Fausett, 1994) ( Bishop, 1995). 

2-2-1. Artificial Neural Networks Architecture: Neural networks are 

made up of neurons, which are interconnected processing units. The structure 
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and function of these neurons is determined by their organization, or network 

architecture. Regardless of the input data, this architecture is fixed and 

computation-free (Fausett, 1994). 

  Three layers usually make up a neural network: the input layer 

receives data, the hidden layer processes it, and the output layer generates 

the results.  Each layer contains nodes, which serve as connection points, and 

levels, which are groups of nodes that receive inputs and generate outputs. 

The strength of the connections between layers is represented by weights. 

(Fausett, 1994) (Mahmood & Ahmed,2023) 

  A neuron consists of four components: weighting coefficients, a 

summation function, a transfer function, and an output function. Its 

operations include receiving input signals, modifying them, summing the 

inputs, using the activation function to generate the output, and passing the 

result either to other neurons or as the final output of the network. 

  The architecture of a neural network describes how its units and 

connections are structured. There are two primary types: feedforward neural 

networks (FFNN) and feedback neural networks. In FFNN data moves in 

one direction, while in feedback networks, information can flow in both 

directions; these basic architectures form the basis for more specialized 

architectures such as NAR neural network, convolutional neural networks 

(CNNs) and competitive generative neural networks (GANs). Neural 

networks are also categorized as either single-layer or multi-layer 

(Galushkin, 2007).  

  Neural networks can be single-layer or multilayer. Multilayer 

perceptrons (MLPs) were initially introduced to address complex 

classification challenges. However, due to their global approximation 

property, they quickly became widely used as nonlinear regression models 

and later for time series modeling and forecasting. Despite their versatility, 

estimating and specifying these models requires advanced techniques, and 

identifying the correct structure is not easy. By nature, these models are over-

parameterized, and their minimization error functions often have many local 

minima, and their implementation can be very difficult (Fausett, 1994) 

(Galushkin, 2007). 

2-2-2. Nonlinear autoregressive (NAR) neural network: The NAR neural 

network is a powerful feed-forward network model that excels at identifying 

patterns and nonlinear features in time series data. It works as a dynamic 
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network, where connections that span its layers, meaning the current output 

is influenced by previous output value y(t - 1), y(t - 2), …, y(t - d). The NAR 

network is capable of effectively forecasting time series and can be 

represented in the following manner (Benrhmach, Namir, Namir, & 

Bouyaghroumni, 2020) (Ali, Mahmood, & Wahdi, 2022): 

 
  Where, y represents the combined interference values from N-1 

interferers. The function f(⋅) is a nonlinear function that can be approximated 

using a neural network. The variable d represents the time delay for the 

interference time series and represents the error between the predicted and 

actual values. This equation shows how the predicted value at time t depends 

on the past values of the time series (Taherdangkoo, Tatomir, Taherdangkoo, 

Qiu, & Sauter, 2020). 

2-2-3. Network Architecture: The NAR network used is a feed-forward 

neural network consisting of three layers: the input layer, the hidden layer, 

and the output layer (Figure 1). The sigmoid function, a continuous nonlinear 

function, is the most commonly used activation function in neural network 

design with backpropagation training. The hidden layer uses a logistic 

sigmoid activation function, while the output layer uses a linear function. 

The optimal number of time delays and hidden nodes can often be 

determined by trial and error (Ratur & Sargsyan, 2018). 

 
Figure (1): The architecture of the NAR model 

  Thus, the NAR neural network is specifically defined by an equation 

of the following form: 
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  The NAR network's architecture equation (10) includes: a: The 

number of data points, k: The number of hidden layers, Φ: The activation 

function used in the hidden layers, βij: The weights connecting input units to 

hidden units. αj: The weights connecting hidden units to the output unit, β0j 

and α0: Bias value of hidden units and output unit. 

  The optimization of the architecture focuses on minimizing the 

number of synapses (weights) and neurons to decrease the network's 

complexity, enhance computation times, and preserve generalization 

capabilities. Two primary approaches to optimizing network architecture 

have been proposed in the literature: 

  Selection Approach: This method begins with the construction of a 

complex network containing a large number of neurons. The goal is to reduce 

the number of unnecessary neurons and eliminate redundant connections 

either during or after the learning process. 

Incremental Approach: This strategy starts with the simplest possible 

network and progressively adds neurons or layers until an optimal 

architecture is achieved. 

  An effective strategy for assessing prediction error involves using a 

dataset that was not employed in building the predictor, known as the test 

set. The dataset can be divided into three types of target time steps: 

Training Set: These datasets are presented to the network during training, 

allowing adjustments based on the network's errors. 

Validation Set: These datasets are used to evaluate the network's 

generalization capabilities and to stop training when further improvements 

in generalization cease. 

  Testing Set: These datasets do not influence the training process and 

provide an independent assessment of the network's performance both during 

and after training. 
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Evaluation Criteria: Using a set of standard statistical metrics, we assessed 

the predictive models' accuracy. These metrics include (Benrhmach, Namir, 

Namir, & Bouyaghroumni, 2020): 

Mean Absolute Error (MAE): Expresses the average difference between 

actual and predicted values, and provides an indication of how close the 

predictions are to reality. 

Root Mean Square Error (RMSE): Gives greater weight to large errors, and 

provides a more accurate estimate of overall model performance. 

Correlation Coefficient (R): Measures the strength of the linear relationship 

between predicted and actual values, and indicates how similar the direction 

of changes in the data is. 

Selecting the best model: We applied the Bayesian Information Criterion 

(BIC) and the Akaike Information Criterion (AIC) to determine the best 

model among the options. (Allende, Moraga, & Salas, 2002) 

3. Results In this research, we will use artificial neural networks to analyze the 

monthly time series data of electricity peak demand in the Kurdistan Region. 

We will compare the results of the neural networks with the traditional Box-

Jenkins methodology.  

The data analyzed in this study represents the average monthly peak 

electricity demand in megawatts (MW) for the Kurdistan Region. The data 

covers a period of five years, from January 1, 2014, to July 2024, totaling 

127 observations. The data was obtained from the Kurdistan Region's 

Ministry of Electricity and analyzed using Statgraphics V.17 and 

Matlab(R2022b).  

3-1. Analysis of the Time Series: We created a visual representation of the 

time series data prior to the analysis, the time series data shows the peak 

demand for electricity in the Kurdistan Region. The data exhibits a general 

trend and cyclical patterns, with spikes that occur regularly and increase over 

time. These patterns indicate a combination of a general trend and 

seasonality, as well as a degree of instability in the series.  

http://www.doi.org/10.25130/tjaes.21.70.1.24
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Figure (2): Original data plot peak electricity demand in Kurdistan Region 

For greater accuracy, we draw both the autocorrelation function and the 

partial autocorrelation function, as in figure (3) 

 
Figure (3): ACF & PACF for the original electricity data 

  Figure 3 shows that many of the autocorrelation coefficients (ACF) 

and the partial autocorrelation function (PACF) fall outside the confidence 

limits at the 95% level, which is an indication of the non-stationarity of the 

time series. This can be confirmed by the Augmented Dickey-Fuller (ADF) 

test, which is one of the most important unit root tests, to prove the 

stationarity of the series or not, as shown in the results of Table 1, as its value 

is equal to (-2.74) and value (0.0713), and therefore the null hypothesis 

cannot be rejected and indicates the non-stationarity of the time series. 
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Null hypothesis: There is a unit root in the data. 

Alternative hypothesis: There is no unit root in the data. 

Table (1): Results of Augmented Dickey-Fuller test for the original series 

 
Test 

Statistics 
P-value 

Critical 

Value 

Null 

Rejected 

Before Differencing -2.74 0.0713 -2.580 False 

After Differencing -14.98 0.000 -2.587 True 

  To make the time series stationary, we applied several seasonal and 

non-seasonal differences, which is essential for preparing the data for 

modeling. We found that a first seasonal difference (d = 1) effectively 

stationary the series during peak electricity demand periods, making the data 

more suitable for the SARIMA model, where stationary is crucial. This was 

confirmed by the ADF test as shown in Table (1), where the absolute test 

statistic (14.98) and the p value (0.000) was less than 0.05. To further verify 

the stationarity, we will conduct ACF and PACF tests on different time series 

Figure3.  

 
Figure (3): Adjusted ACF and PACF after first seasonal differences 

To select the optimal SARIMA model, we analyzed several well-known 

models in Table 2. This requires experience in time series analysis. We 

evaluated the models based on their performance (RMSE, AIC, and SBIC) 

and selected the model that achieved the best overall results. It is SARIMA 

(1,0,1) (0,1,1)12. This model has the lowest values for the comparison criteria 

compared to the other models. 
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Table (2): Proposed models with significant estimates 

Model RMSE AIC SBIC Sig. Parameters 

SARIMA (1,0,1) (0,1,1)12 393.303 11.996 12.064 Yes 

SARIMA (1,0,1) (1,1,1)12 394.902 12.020 12.109 No 

SARIMA (1,0,1) (1,0,1)12 401.583 12.054 12.143 No 

SARIMA (1,0,0) (1,1,1)12 438.297 12.213 12.280 No 

SARIMA (1,0,0) (0,1,1)12 441.973 12.214 12.259 No 

We estimated the parameters of this model and selected the best estimation 

method in Table 3. 

Table (3): Estimated Parameters Values of the 

SARIMA (1,0, 𝟏) (𝟎,𝟏,𝟏)𝟏𝟐 Model 

Parameter Estimate Standard Error t P-value 

AR(1) 0.99998 0.0040 252.075 0.00 

MA(1) 0.8058 0.0546 14.7636 0.00 

SMA(1) 0.756 0.0593 12.7579 0.00 

Moreover, we can express the previous model's form as follows: 

(1−0.99998B)Yt=(1+0.8058B)(1−B12)(1−0.7556B12)ϵt 

Model Evaluation: Once we have identified and estimated the candidate 

SARIMA (1,0,1) (0,1,1) 12 models, we need to evaluate how well it fits the 

data. This involves checking both the model parameters and the residuals. 

To assess the model's suitability, we conducted a diagnostic check of the 

residuals for the SARIMA (1,0,1) (0,1,1)12 model. We used ACF and PACF 

plots to analyze the residuals, as shown in Figure 6. 

 
Figure (4): ACF and PACF of residual model 

  We found that all the ACF and PACF values of the residuals were 

within the confidence limits, further supporting the conclusion that the 

residuals are random and the model is appropriate. 
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  We checked for autocorrelation in the residuals using the Box-Pierce 

test to make sure the model fit. The test yielded a p-value of 0.821767, which 

is greater than 0.05. This indicates that there is no significant autocorrelation 

in the residuals, confirming that the model is appropriate and effective. 

Forecasting: Forecasting peak demand and managing seasonal loads are 

crucial for optimizing electrical grids, reducing costs, and promoting 

sustainable energy practices. By accurately forecasting peak demand, 

utilities can make informed decisions to optimize energy generation, 

distribution, and consumption. 

The next step, after diagnosing and selecting the most suitable model, marks 

the conclusion of the time series analysis modeling. 

Table (4): The forecasted monthly peak electricity demand 

Period Forecast Limit Lower 95% Limit Upper 95% 

8/2024 5276.9 4389.36 6614.36 

9/2024 4895.03 4109.76 6051.29 

10/2024 4174.97 3580.89 5005.38 

11/2024 6348.82 5052.1 8541.06 

12/2024 7246.93 5583.58 10321.8 

1/2025 7893.4 5936.02 11776.7 

2/2025 7641.16 5770.26 11307.4 

3/2025 6790.35 5253.55 9598.02 

4/2025 5556.19 4470.34 7338.8 

5/2025 4630.01 3841.31 5826.27 

6/2025 5229.57 4233.96 6837.38 

7/2025 5524.47 4413.27 7383.55 
 

 
Figure (5): Forecasting using SARIMA (1,0,1) (0,1,1)12 model from 8/2025 

to 7/2025 

2000

3000

4000

5000

6000

7000

ن
نو

كا
ي

ثان
ال

-
1
4

ز
مو

ت
-

1
4

ن
نو

كا
ي

ثان
ال

-
1
5

ز
مو

ت
-

1
5

ن
نو

كا
ي

ثان
ال

-
1
6

ز
مو

ت
-

1
6

ن
نو

كا
ي

ثان
ال

-
1
7

ز
مو

ت
-

1
7

ن
نو

كا
ي

ثان
ال

-
1
8

ز
مو

ت
-

1
8

ن
نو

كا
ي

ثان
ال

-
1
9

ز
مو

ت
-

1
9

ن
نو

كا
ي

ثان
ال

-
2
0

ز
مو

ت
-

2
0

ن
نو

كا
ي

ثان
ال

-
2
1

ز
مو

ت
-

2
1

ن
نو

كا
ي

ثان
ال

-
2
2

ز
مو

ت
-

2
2

ن
نو

كا
ي

ثان
ال

-
2
3

ز
مو

ت
-

2
3

ن
نو

كا
ي

ثان
ال

-
2
4

ز
مو

ت
-

2
4

ن
نو

كا
ي

ثان
ال

-
2
5

ز
مو

ت
-

2
5

Demad Forecast

http://www.doi.org/10.25130/tjaes.21.70.1.24


Tikrit Journal of Administrative and Economic Sciences, Vol. 21, No. 70, Part (1): 459-478 

Doi: www.doi.org/10.25130/tjaes.21.70.1.24 

 

473 

3-2. Application of NAR Neural Network: Study and analysis of peak 

electricity demand using NAR NN model with the data collected for this 

study from 127 observations, divided as follows: 70% of the observations, 

which equals 89 observations, as the training set, and 15%, which equals 19 

observations for both the validation set and the test set. 

  The prediction process starts by defining an input layer which is a 

single neuron representing the monthly time series of peak electricity 

demand. Determining the number of delays (lags) and hidden nodes, since 

the time series is seasonal and the PACF reveals large spikes in seasonal 

delays, this indicates the presence of seasonal dependencies at these points. 

As shown in Figure (3) and from the previous data analysis, both regular and 

seasonal delays will be taken into account when selecting the inputs for the 

neural network. Given the importance at delay (lags) 12, the preferred 

number of delays is 12. However, through the trial and error process, we 

confirmed this aspect. We conducted multiple experiments on peak power 

demand, varying the number of neurons in the hidden layer from 1 to 10 in 

each experiment, and varying the number of delays from 1 to 15. Finally, we 

determined the best NAR neural network model (1:12,10) which is a single 

input model with 12 delays and 10 hidden neurons, and some of the results 

are shown in Table5. Forecasting peak demand and managing seasonal loads 

are crucial for optimizing electrical grids, reducing costs, and promoting 

sustainable energy practices. By accurately forecasting peak demand, 

utilities can make informed decisions to optimize energy generation, 

distribution, and consumption. 

Table (5): Comparisons  results for the NAR neural network 

ID Architecture RMS MAE MAPE R 

1 (1:12,1) 7747.99 407.1 5 985.28 0.896 

2 (1:12,2) 1712.9 374.43 911.08 0.884 

3 (1:12.3) 1243.76 360.76 880.62 0.900 

4 (1:12,4) 1351.01 386.34 940.98 0.880 

5 (1:12,5) 1521.17 335.63 800.95 0.910 

6 (1:12,6) 1360.53 337.36 805.78 0.908 

7 (1:12,7) 1447.59 329.42 799.98 0.908 

8 (1:12,8) 1232.21 371.64 906.64 0.891 

9 (1:12,9) 1819.88 361.59 880.86 0.895 

10 (1:12,10) 1356.72 315.07 764.79 0.918 
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From Table (5), we note that the best structure for the NAR neural network 

is (1:12,10) as can be seen in Figure 6, according to the criteria (RMS, 

MAE, MAPE, R). 

 
Figure (6): NAR Neural Network optimal architecture 

Nonlinear autoregressive neural network training regression  

Figure 7: shows the regression plot for the training, validation, and testing 

sets combined. The lines in each quadrant represent the model's predictions 

compared to the actual values. The closer the lines are to the diagonal line, 

the better the model's performance. 

  The correlation coefficient (R) measures the strength of the 

relationship between the predicted values and the actual values. A value 

closer to 1 indicates a stronger relationship. 

 
Figure (7): Regression plots showing NAR NN (1:12,10) for electricity 

demand 
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Error histogram and error autocorrelation function: Figure 13 shows the 

error histogram and error autocorrelation function to evaluate the suitability 

of the network to the training process for the four models. 

Figure (8): Shows the histogram of errors and the autocorrelation function 

of the error 

  Figure 8 reveals that the model's error histogram accurately represents 

the residuals. As the network trains, the errors between the target values and 

the expected values decrease and become symmetrical with respect to the 

zero axes, indicating a normal distribution and appropriate training of the 

network. Additionally, the error autocorrelation function verifies that all 

errors remain uncorrelated and fall within the 95% confidence interval 

around zero. This indicates the network's learning quality and its capacity to 

forecast the demand for electrical energy on a monthly basis using a daily 

time series, as evidenced by the correlation coefficient's value being close to 

one. 

Nonlinear autoregressive Training Time-Series Response: Figure 4 

presents the time-series response plot for the validated instances using the 

NAR neural network. It also highlights the time intervals allocated for the 

testing, validation, and training phases. Based on the test results, the NAR 

neural network model is identified as (1:12, 10). The plot demonstrates the 

consistent distribution of the response curve's outputs throughout the 

training, testing, and validation processes. Additionally, the accompanying 
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autocorrelation function plot supports this, as all its values fall within the 

acceptable range. 

 
Figure (9): The Time-Series Response for the NARNN (1:12,10) Model 

Comparison SARIMA model and NAR neural network: In order to 

choose the most appropriate model for predicting electrical energy demand, 

we compared the SARIMA model and NAR neural network based on 

statistical criteria (MAE, RMSE, and MAPE), and Table 6 shows the 

comparison results.  

Table (6): Comparison between (SARIMA and NARNN) Models for 

prediction Peak Demand Electricity 

Models RMSE   
 

MAE MAPE 

SARIMA (0,1,1) (0,1,1)12 393. 30 279.99 5.72 

(NAR NN)(1:12,10) 1356.72 315.07 764.79 

Based on the results, the SARIMA (1,0,1) (0,1,1) model outperforms the 

NAR (1:12,10) model in terms of the three statistical criteria. This indicates 

that the SARIMA model provides more accurate predictions. 

4. Conclusion: Based on the results, the following is a summary of the most 

important conclusions obtained from this study: 

1. Using the Box-Jenkins method for time series analysis, the SARIMA (1,0,1) 

(0,1,1)12 model was identified as the most suitable model. This model 

demonstrated strong predictive power after comparing it to other models and 

evaluating its performance using criteria like RMSE, AIC, and SBIC. 
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2. Nonlinear autoregressive neural networks were used to predict the increase 

in electricity demand. By experimenting with different numbers of hidden 

nodes and time delays, the NAR NN (1:12,10) model was found to be the 

best fit for the data. This model achieved the lowest values for statistical 

criteria (RMSE, MAE, and MAPE). 

3. We evaluated the performance of the NAR neural network and the traditional 

Box-Jenkins (SARIMA) method by comparing their results using statistical 

criteria (RMSE, MAE, MAPE). The SARIMA (1,0,1) model showed the 

lowest values for these metrics, making it the most accurate model for 

forecasting peak electricity consumption and highly effective for forecasting. 
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