

Tikrit Journal of Administrative and Economics Sciences مجلة تكريت للعلوم الإدارية والاقتصادية

EISSN: 3006-9149 PISSN: 1813-1719

The Impact of Climate Change on Barley Crops: The Case of Iraq

Ghufran Aziz Ahmed*, Yusra Tariq Bakr

College of Agriculture/Tikrit University

changes.

Keywords:

Climate Change, Barley Crop, Climate data

ARTICLE INFO

Article history:

Received 01 Dec. 2024 Accepted 07 Jan. 2025 Available online 30 Jun. 2025

©2023 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE

http://creativecommons.org/licenses/by/4.0/

*Corresponding author:

Ghufran Aziz Ahmed

College of Agriculture/Tikrit University

results show significant fluctuations in cultivated areas due to multiple climatic and economic factors, such as rainfall fluctuations and high temperatures. Climatic factors directly affect barley productivity, as lack of rainfall leads to decreased production, while high humidity contributes to increased production. Wind speed and CO2 emissions also negatively affect the crop. A long-term relationship between these factors and barley production was identified using counteraction test. The study recommends improving water resource management, enhancing agricultural research to develop drought-resistant varieties, supporting farmers, and adopting climate-resistant agricultural technologies. The importance of climate predictions is highlighted in making more effective agricultural decisions and implementing flexible policies to support the agricultural sector in the face of future climate

Abstract: The study examines the impact of climate change on barley production in Iraq during the period from 1990 to 2022. The

أثر التغيير المناخي في محصول الشعير – العراق انموذجاً غفران عزيز أحمد يسرى طارق بكر كلية الزراعة/ جامعة تكريت

المستخلص

تتناول الدراسة تأثير التغيرات المناخية على إنتاج محصول الشعير في العراق خلال الفترة من (1990-2022). تظهر النتائج تذبذبًا ملحوظًا في المساحات المزروعة بسبب عوامل مناخية واقتصادية متعددة، مثل تقلبات الأمطار وارتفاع درجات الحرارة. تؤثر العوامل المناخية بشكل مباشر على إنتاجية الشعير، حيث يؤدي نقص الأمطار إلى انخفاض الإنتاج، بينما تسهم الرطوبة العالية في زيادة الإنتاج. كما أن سرعة الرياح وانبعاثات (CO2) تؤثر سلبًا على المحصول. تم تحديد علاقة طويلة الأجل بين هذه العوامل وإنتاج الشعير باستخدام اختبار التكامل المشترك. تُوصي الدراسة بتحسين إدارة الموارد المائية، تعزيز البحث الزراعي لتطوير أصناف مقاومة للجفاف، دعم الفلاحين، واعتماد تقنيات زراعية مقاومة للتغيرات المناخية. تبرز أهمية التنبؤات المناخية في اتخاذ قرارات زراعية أكثر فاعلية وتطبيق سياسات مرنة لدعم القطاع الزراعي في مواجهة التغيرات المناخية المستقبلية.

الكلمات المفتاحية: التغير المناخي، محصول الشعير، البيانات المناخية.

المقدمة

تعد الزراعة في العراق أحد القطاعات الحيوية التي تسهم بشكل كبير في الاقتصاد الوطني والأمن الغذائي، إذ يُعد الشعير من المحاصيل الأساسية التي يعتمد عليها الفلاحون في العديد من المناطق الزراعية. ومع ذلك، فأن هذا القطاع الزراعي يواجه تحديات كبيرة نتيجة للتغيرات المناخية التي تسببت في تقلبات كبيرة في أنماط الطقس، مثل ارتفاع درجات الحرارة، تغيرات في معدلات الأمطار، وزيادة حدوث الجفاف والعواصف الرملية. هذه التغيرات تؤثر بشكل مباشر على إنتاجية المحاصيل الزراعية، ومن بينها محصول الشعير، مما يشكل تهديدًا للأمن الغذائي في العراق، تهدف هذه الدراسة إلى تحليل تأثير التغيرات المناخية على إنتاج الشعير في العراق خلال الفترة الزراعية الممتدة من عام (1990-2021). سيتم التركيز على دراسة العوامل الشعير في المناطق الزراعية وتحليل تقلبات الإنتاج على مر السنوات في ظل هذه التغيرات المناخية، تسعى الدراسة إلى تقديم توصيات يمكن أن تسهم في تحسين السياسات الزراعية والتخطيط الاستراتيجي لضمان استدامة إنتاج الشعير وتعزيز الأمن الغذائي في العراق في المستقبل.

المبحث الأول: منهجية البحث

أولاً. الهدف: تحليل تأثير التغيرات المناخية على إنتاج محصول الشعير في المناطق الزراعية المختلفة في العراق، وتحديد العوامل المناخية التي تؤثر بشكل كبير على هذا المحصول، وذلك من خلال دراسة البيانات المناخية والإنتاجية خلال الفترة الزمنية من (1990-2022).

ثانياً. المشكلة: تواجه مناطق زراعية معينة في العراق تحديات كبيرة نتيجة التغيرات المناخية التي تؤثر على كمية وجودة إنتاج الشعير، مما يهدد الأمن الغذائي والاستدامة الزراعية. تتضمن هذه التحديات التغيرات في درجات الحرارة، الأمطار، وزيادة حدوث الكوارث الطبيعية مثل الجفاف والعواصف الرملية.

ثالثاً. الفرضية: من المتوقع أن تؤدي التغيرات المناخية (مثل ارتفاع درجات الحرارة وتغير أنماط الأمطار) إلى تقليل إنتاجية محصول الشعير في العديد من المناطق الزراعية في العراق، مما ينعكس سلباً على توفير هذا المحصول للغذاء والتغذية في هذه المناطق.

رابعاً. أهمية التحليل: يعد التحليل الاقتصادي لآثار التغيرات المناخية على إنتاج الشعير مهماً لأنه يوفر معلومات قيمة للسياسات الزراعية والتخطيط الاستراتيجي للمستقبل في العراق، ويساعد في وضع تدابير وقائية للتكيف مع التغيرات المناخية، ومن ثم ضمان استدامة إنتاج المحاصيل، وخاصة في الدول التي تعتمد بشكل كبير على الشعير كمصدر غذائي.

خامساً. الحدود المكانية والزمانية للبحث

- 1. الحدود المكانية: تمثلت الحدود المكانية لأجراء الدراسة في العراق
- الحدود الزمانية: تمثلت الحدود الزمانية للبحث في المدة الواقعة (1990-2021) التي تبدأ في تحليل أثر التغيرات المنخابة على انتاج الشعير واستخراج الاستنتاجات والتوصيات والتحليل البياني

المبحث الثاني: واقع إنتاج محصول الشعير في العراق للمدة (1990-2022)

الأهمية الاقتصادية لمحصول الشعير: يعد محصول الشعير من أهم محاصيل الحبوب للغذاء والصناعة في أجزاء كثيرة من العالم، لأنها تشكل المصدر الغذائي الرئيسي لمكونات العلف الأساسية لتربية الحيوانات، إذ تم تضمين بذور هذا المحصول في تكوين علف الدواجن التسمين: غني بفيتامين لتربية الحيوانات، إذ تم تضمين بذور الصفراء، أصل زراعة الشعير في شمال إثيوبيا وجنوب شرق آسيا، وأثبتت السجلات أن زراعته في مصر كانت في عام (5000) قبل الميلاد، مع سجل زراعة الشعير كانت في ما الصين في 2000 قبل الميلاد، مع سجل الشعير كانت في ما الصين في صناعة النسيج الميلاد، يمكن أيضا استخراج النشا من بذور الشعير في شمال غرب للاستخدام في صناعة النسيج والتطبيقات الصناعية المختلفة. ينمو الشعير أيضا في المناطق الباردة من العالم خلال فصلي الربيع والشتاء، وفي الأماكن العميقة والخصبة والمروءة جيدا-القلوية الجافة (7-8) والتربة الرملية تتخلف عن الإنتاجية، ومن ثم تصبح ملوحة التربة والمياه مشكلة. عند زراعة القمح، يمكنك زراعة أعشاب أخرى أو البرسيم في الشعير لحماية الشربة والمياه مشكلة. عند زراعة القمح، يمكنك زراعة أعشاب الحبوب. ويزدهر الشعير في المناطق الباردة وهو أكثر عطشا ومقاومة من القمح. (المؤسسة العربية المتنمية الزراعية).

واقع إنتاج محصول الشعير في العراق: يعد محصول الشعير من المحاصيل الاستراتيجية الرئيسة من حيث الأهمية التغذية والاقتصادية في العراق الذي يحتل المرتبة الثانية بعد القمح العراقي من حيث أهميته النسبية، ويعتبر هذا المحصول من أهم المحاصيل في العراق إذ تمت دراسته للفترة (1990 -2022) من حيث المساحة والانتاج والانتاجية، وقد شهدت الفترة من (1990-2022) العديد من التغييرات على الجوانب الاقتصادية والسياسية وغيرها، والتي أثرت على قطاعات مختلفة، بما في ذلك القطاع الزراعي.

المساحات المزروعة بمحصول الشعير في العراق للمدة (1990-2220): يظهر في الجدول رقم (1) أنَّ المساحة المزروعة بالشعير على مستوى العراق بلغت في المتوسط (3-957.495) دونم أثناء المدة (1990-2202)، وقد سجل عام (1991) أقصى مساحة زرعت بالمحصول بلغت (8976) دونم، ويرجع ذلك إلى السياسة الزراعية المشجعة المطبقة استجابة لزيادة الأراضى الصالحة للزراعة والعقوبات الاقتصادية بسبب قلة هطول الأمطار في منطقة ديمية، مما أدى إلى انخفاض الأراضي الصالحة للزراعة في المنطقة الديمية، في حين أدنى مساحة مزروعة بالمحصول بلغت نحو (601) دونم في عام (2018) بسبب قلة الأمطار في المناطق الديمية مما أدى إلى انخفاض المساحة المزروعة للمنطقة الديمية، إذ يُلاحَظ أنَّ هذه المساحات اتسمت بالتذبذب من سنة إلى أخرى، إذ يلاحظ أنَّ المساحات المزروعة على مستوى محافظة صلاح الدين شهدت زيادة متذبذبة بالتزامن مع التذبذب الحاصل في المساحات المزروعة بالمحصول على مستوى العراق، هذا التذبذب لموسم الإنتاج النباتي لاسيما المحاصيل التي تعتمد على الأمطار وتشكل نسبة الأراضي الديمية نسبةً لابأس بها من مساحة القمح الكلية فضلاً عن القر ار ات التشريعية المتعلقة بالأسعار و الدعم ناهيك عن استجابة المنتج غير الأنية لهذه المتغيرات، ثم شهدت محافظة صلاح الدين بعدها انخفاضاً كبيراً نسبياً في عام (2011) اذ بلغت نحو (16744)، ويعزى إلى انخفاض الأسعار وتأخر استلام مستحقات الفلاحين، بينما شهد عام (1991) أعلى مستوى في المساحات المزروعة حيث بلغ (483351)، وبدأت المساحة المزروعة في محافظة صلاح الدين بالتزايد بين عامي 1990 و1993، متذبذبة بالتوازي مع التذبذب في المساحة المزروعة في العراق (في عام 1993)، ولكنها بدأت بالتذبذب بعد ذلك حتى عام 1999 ناهيك عن الاستجابة غير المتزامنة للمنتجين لهذه المتغيرات، فليس من المستغرب أن تشهد صلاح الدين الأهمية النسبية لمساهمة صلاح الدين في المناطق التي زرع فيها الشعير في العراق. في عام (1991) كانت أعلى نسبة إذ مثلت نسبة (14.5%)، في حين كانت أدنى أهمية نسبية في عام (2011) وكانت بنسبة (%0.50).

جدول (1): المساحة المزروعة للشعير في العراق ومحافظة صلاح الدين للمدة (2022-2022)

الأهمية النسبية	المساحة المزروعة (الف دونم)		السنة	الأهمية النسبية	المساحة المزروعة (الف دونم)		السنة	
للمساحة %	صلاح الدين	العراق		للمساحة %	صلاح الدين	العراق		
0.503620903	16744	3651	2011	11.20460261	372522	6902	1990	
0.922693409	30677	2850	2012	14.53808332	483351	8976	1991	
0.878759825	29216.33	3364	2013	8.995335852	299070	7076	1992	
0.768358146	25545.78	4632	2014	7.391894001	245760	6333	1993	
0.856603693	28479.7	1003	2015	5.697015962	189410	5559	1994	
0.834573888	27747.27	1062	2016	4.187266127	139215	4675	1995	
0.819845142	27257.58	820	2017	3.644333678	121164	4174	1996	
0.837007775	27828.19	601	2018	4.441061706	147653	3999	1997	
0.830475501	27611.01	3721	2019	3.010476361	100090	4180	1998	
0.829109673	27565.6	4528	2020	2.780351927	92439	4181	1999	
0.83219775	27668.27	3092	2021	1.794344972	59657	2306	2000	
0.830594308	27614.96	3780.333	2022	1.738580928	57803	2217	2001	
100	3324723	130597.3	المجموع	1.996978395	66394	3862	2002	
	100749.2	3957.495	المتوسط	2.411058004	80161	4253	2003	
14.53808332	483351	8976	اعلی حد	4.694736975	156087	3829	2004	
0.503620903	16744	601	ادنی حد	3.415322119	113550	4253	2005	
				1.782013118	59247	4104	2006	
				2.693367237	89547	4375	2007	
				1.574868042	52360	5395	2008	
				1.054493863	35059	2817	2009	
				1.209965462	40228	4027	2010	

المصدر: وزارة التخطيط /الجهاز المركزي للإحصاء، مديرية الإحصاء الزراعي.

المصدر: من إعداد الباحثة بالاعتماد على بيانات الجدول رقم (1).

انتاج محصول الشعير في العراق خلال فترة الدراسة بحوالي (1998-2220): وقد قدر متوسط انتاج محصول الشعير في العراق خلال فترة الدراسة بحوالي (773.9688) ألف طن، ووصل أعلى انتاج خلال هذه الفترة إلى حوالي (1756) ألف طن/سنة (2020) وذلك نتيجة للزيادة في مساحة زراعة محصول الشعير واستخدام أصناف محسنة عالية الإنتاجية، أما في عام 2018 أدنى انتاج وقدر بـ (191) ألف طن، كما هو مبين في الجدول، أما في محافظة صلاح الدين فقد سجلت اعلى قيمة للإنتاج (87682) لف طن في العام (1990 وهي 3126 الف طن، في حين كان متوسط انتاج محافظة صلاح الدين3250.6 الف طن

جدول (2): إنتاج محصول الشعير في العراق ومحافظة صلاح الدين للمدة (2022-2022)

الأهمية النسبية	الانتاج (الفطن) الأهمية		أهمية النسبية السنة	الأهمية النسبية	الانتاج (الف طن)		السنة
للمساحة %	صلاح الدين	العراق	47111)	للمساحة %	صلاح الدين	العراق	است
0.8814	3797	820	2011	1294.3992	87682	1637	1990
1.7287	7447	832	2012	5.3132	22889	664	1991
1.6995	7321.333	1003	2013	12.4949	53827	1354	1992
1.4365	6188.444	1278	2014	4.0244	17337	890	1993
1.6216	6985.593	330	2015	3.0021	12933	854	1994
1.5859	6831.79	499	2016	3.1321	13493	712	1995
1.5480	6668.609	303	2017	0.9629	4148	647	1996
1.5851	6828.664	191	2018	2.1825	9402	430	1997
1.5730	6776.354	1518	2019	4.8603	20938	630	1998
1.5687	6757.876	1756	2020	0.7256	3126	283	1999
1.5756	6787.631	1155	2021	0.8749	3769	193	2000
1.5724	6773.954	1476.333	2022	4.0581	17482	713	2001
100	430793.2	27131.33	المجموع	2.6783	11538	833	2002
	13054.34	822.1616	المتوسط	2.0332	8759	860	2003
1294.3992	87682	1756	اعلی حد	3.2456	13982	806	2004
0.7256	3126	191	ادنی حد	1.8923	8152	754	2005
				2.5010	10774	919	2006
				1.6528	7120	748	2007
				1.3310	5734	404	2008
				1.8162	7824	502	2009
				2.4884	10720	1137	2010

المصدر: وزارة التخطيط /الجهاز المركزي للإحصاء، مديرية الإحصاء الزراعي.

شكل (2): الاتجاه العام لإنتاج محصول الشعير في العراق وصلاح الدين للمدة (1990-2022) المصدر: من إعداد الباحثة بالاعتماد على بيانات الجدول رقم (2).

- 1. مفهوم المناخ: مناخ العراق يتميز بأنه قاري جاف، إذ تتسم درجات الحرارة بالارتفاع الشديد في الصيف، مع هطول أمطار قليل جدًا، خصوصًا في الجنوب. في الشمال، يكون الطقس أقل حرارة، مع تساقط ثلوج في المناطق الجبلية. المعدل السنوي لهطول الأمطار يتراوح بين 4 إلى 7 بوصات، وتحدث الأمطار بشكل رئيس من نوفمبر إلى أبريل (النافعي، 2013: 35).
- 2. ملامح تغير المناخ: المناخ في العراق يعاني من قلة الأمطار وتذبذبها. كما أن درجات الحرارة القصوى مرتفعة نظرًا لقلة تأثيرات البحر، مما يؤدي إلى زيادة التباين بين درجات الحرارة في الصيف والشتاء. يُعد المناخ قاريًا، مما يزيد من نطاق الحرارة اليومي والسنوي (مراد، 2005: 5).
- 3. العوامل المؤثرة على المناخ في العراق: موضع دائرة العرض: تأثير كبير على كمية الإشعاع الشمسي والطقس، حيث يكون التأثير أقوى في الجنوب (العامري، 2005).
- الموقع النسبي للبحر: البحر الأبيض المتوسط والخليج العربي هما المصدران الرئيسان للتأثيرات الجوية (المسعودي، 2013: 23).
- التضاريس: تؤثر التضاريس في توزيع الحرارة والأمطار، إذ تزداد البرودة والأمطار في الشمال (العامري، 2005).
- الكتلة الهوائية: تتفاوت تأثيرات الكتل الهوائية على العراق حسب الموسم، مثل الكتل القطبية في الشتاء والكتل المدارية في الصيف (صالح، 2009: 25-26)
- 4. درجة الحرارة: درجة الحرارة تتفاوت حسب الموقع والموسم. في الشتاء، تنخفض درجات الحرارة بسبب زاوية الإشعاع الشمسي الصغيرة. في الصيف، ترتفع بشكل كبير نتيجة لتساقط أشعة الشمس المباشرة (مراد، 2005: 7).
- 5. العوامل المناخية الأخرى: العوامل المناخية الأخرى مثل الرطوبة والرياح والضغط الجوي تؤثر بشكل ملحوظ على المناخ العراقي. على سبيل المثال، الرياح الشمالية الغربية تساهم في زيادة الجفاف خلال فصل الصيف (عبد العال، 2013: 45).

6. النموذج المناخي: النموذج القياسي يستخدم لتحديد تأثير العوامل المناخية على القطاع الزراعي. يتم تمثيل العوامل المناخية (مثل الأمطار ودرجات الحرارة) كمتغيرات مستقلة تؤثر على الإنتاج الزراعي (المصادر غير محددة في النص). للنموذج الأول (النموذج المناخي) ستكون بالشكل الآتي: $Y = F(X_1, X_2, X_3, X_4, X_5)$

Y: تمثل المتغير المعتمد، متمثلاً بالناتج الزراعي، والذي تم التعبير عنه بالقطاع الزراعي كنسبة من إجمالي الناتج المحلي.

ي ... X_1 تمثل معدل سقوط الامطار السنوية (ملم/سنة).

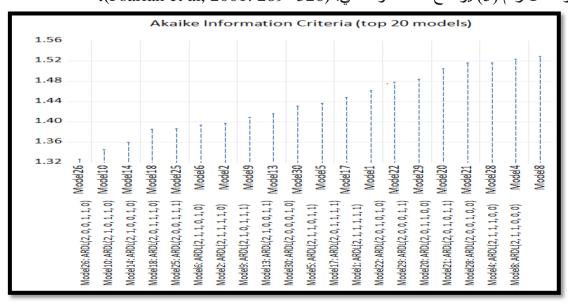
 X_2 : تمثل معدل در جات الحرارة السنوية (در جة مئوية).

 X_3 : تمثل معدل الرطوبة السنوي (%).

 X_4 : تمثل معدل سرعة الرياح السنوي (كم/ساعة).

نائق الشمس بالساعات/اليوم). X_5

جدول (3): التغيرات المناخية لمحصولي الشعير في العراق للمدة 1990-2021


	جدون (د): التغيرات الملاكية لمحصوبي الشغير في الغراق للمدة 1990-2021							
		معدل سقوط	معدل درجات	معدل	معدل سرعة	السطوع الشمسي الفعلي		
السنوات	انتاج شعير		الحرارة السنوية			(سنوياً، تألق الشمس		
		(ملم/سنة)	(درجة مئوية)	(%)	(كم/ساعة)	بالساعات/اليوم)		
1990	1637550	36.03	90.57	132.86	19.37	8.658		
1991	768400	50.37	89.17	148.93	19.32	8.117		
1992	1353800	53.89	83.15	148.79	19.8	7.608		
1993	890400	55.52	88.54	147.15	20.07	7.867		
1994	853900	64.58	92.1	150.54	19.47	7.975		
1995	712300	39.75	90.41	142.9	19.56	8.667		
1996	647300	62.08	93.5	149.19	20.52	8.25		
1997	429600	57.8	88.2	152.7	19.74	8.25		
1998	629900	45.07	94.1	139.16	20.45	8.25		
1999	283000	24.96	95.38	123.19	20.21	8.25		
2000	192700	43.46	92.03	130.64	20.29	8.25		
2001	712800	54.25	92.85	141.35	20.18	8.508		
2002	833400	51.22	91.4	139.82	20.29	8.4		
2003	860400	54.64	91.61	142.67	19.9	8.073		
2004	805400	63.65	91.36	143.19	20.27	8.208		
2005	754400	49.97	91.28	135.86	19.74	8.455		
2006	919300	64.97	91.91	143.19	20.48	8.355		
2007	748300	51.89	92.26	136.9	20.16	8.225		
2008	404000	41.84	91.97	129.4	20.09	8.305		
2009	501500	43.43	91.6	141.85	19.74	7.986		
2010	551266	41.51	98.57	128.54	20.48	8.231		
2011	820000	39.35	89.74	138.62	19.77	8.301		
2012	832000	47.26	93.55	139.34	19.85	7.878		
2013	1003198	56.61	89.65	149.93	19.49	8.435		
2014	1278000	47.67	93.29	148.56	19.91	8.089		
2015	333000	62.93	94.18	144.88	20.09	7.615		

السنوات	انتاج شعير	معدل سقوط الامطار السنوية	معدل درجات الحرارة السنوية	معدل الرطوبة	معدل سرعة الرياح	السطوع الشمسي الفعلي (سنوياً، تألق الشمس
		(ملم/سنة)	(درجة منوية)	(%)	(كم/ساعة)	بالساعات/اليوم)
2016	499000	58.51	92.77	140.46	19.47	7.883
2017	303000	30.33	94.48	129.54	19.89	8.151
2018	191020	0.26	96.13	157.73	19.48	7.781
2019	1518471	0.22	92.28	161.65	19.87	8.333
2020	1756200	10.27	94.3	149.64	19.75	8.167
2021	266,581	11.26	94.24	156.34	19.7	8.383
2022	144,493	10.76	93.62	155.87	19.76	8.312
المجموع	24434579	43.22151515	1858.79	2874.16	397.89	270.216
حد اعلی	740441.7879	39.3665	92.9395	143.708	19.8945	8.188363636
حد أدنى	1756200	43.22151515	98.57	161.65	20.52	8.667
النمو	-0.15	0.22	89.65	128.54	19.32	7.615

المصدر: هيئة الانواء الجوية والرصد الزلزالي/ العراق.

المبحث الثالث: التحليل الاقتصادي والقياسي للعوامل المناخية المؤثرة على انتاج محصول الشعير في العراق للمدة (1990-2022)

لتقدير العوامل المناخية المؤثرة على انتاج محصول الشعير في العراق خلال المدة (1990-2022)، نتبع الخطوات التالية بعد حذف متغير السطوع الشمسي الفعلي Lnx₅) بسبب عدم معنويته ويؤثر بشكل سلبي على نتائج باقي المتغيرات وسوف نتبع خطوات التحليل الكمي كما يأتي: تحديد فترات الإبطاء المثلى: توجد العديد من المعايير المستخدمة في تحديد فترات الإبطاء المثلى للنموذج، والتي تستخدم بوساطة معيار (AIC) فأن النموذج الذي سيتم اختياره عند تطبيق منهجية للنموذج، والتي تستخدم بوساطة معيار (2.0.0.1.1.0) فأن النموذج الذي سيتم اختياره عند تطبيق منهجية (ARDL) هو (Psarian et al, 2001: 289-326).

شكل (3): نتائج فترات الابطاء وفق معيار (AIC) للأنموذج المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (Eviews12).

التقدير الأولي لأنموذج الانحدار الذاتي للإبطاء الموزع (ARDL): بعد التأكد من استقرارية السلاسل الزمنية للمتغيرات بواسطة استخدام الاستقرارية للمتغيرات، نقوم بأجراء التقدير الأولي السلاسل الزمنية للمتغيرات بواسطة استخدام الاستقرارية للمتغيرات، نقوم بأجراء التقدير الأولي (ARDL) لأنموذج الأنموذج الأبطاء الموزع (ARDL) باستخدام البرنامج الإحصائي (0.56) أي نلاحظ من الجدول رقم (4) أن قيمة معامل التحديد المصحح (Adjusted R) يساوي (0.56) أي أن المتغيرات المستقلة الداخل في الأنموذج المقدر تفسر حوالي(56%) من التغيرات في المتغير التوامل المفسرة هي ذات التأثير الأكبر في الدالة أمّا (44%) فهي غير التابع، وهذه دلالة على أن العوامل المفسرة هي ذات التأثير الأكبر في الدالة أمّا (44%) فهي غير مفسرة إي مسؤولة عنها المتغيرات غير الداخلة في الأنموذج وامتص اثر ها المتغير العشوائي. أمّا قيمة اختبار (F) المحتسبة تساوي (4.95) ومستوى احتمالية تساوي (0.001) وهي أقل من (0.05)، وهذا يعني أن الأنموذج المقدر معنوي ككل ويمكن الاعتماد علية في عملية التخطيط والتنبؤ المستقبلي. (250-245: 2006: 245)

جدول (4) نتائج التقدير الأولى لأنموذج (ARDL)

Dependent Variable: LNY

Method: ARDL

Date: 05/19/24 Time: 16:49 Sample (adjusted): 1992 2022

Included observations: 31 after adjustments Maximum dependent lags: 3 (Automatic selection) Model selection method: Akaike info criterion (AIC)

Dynamic regressors (1 lag, automatic): LNX1 LNX2 LNX3 LNX4 LNX6

Fixed regressors: C @TREND Number of models evalulated: 96 Selected Model: ARDL(2, 0, 0, 1, 1, 0)

Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
LNY(-1)	-0.025415	0.174566	-0.145589	0.8857
LNY(-2)	-0.887199	0.174234	-5.091995	0.0001
LNX1	0.233753	0.094053	2.485341	0.0219
LNX2	-1.207000	4.114946	-0.293321	0.7723
LNX3	6.553386	2.171155	3.018387	0.0068
LNX3(-1)	3.021611	1.571541	1.922705	0.0689
LNX4	-15.56896	7.546728	-2.063008	0.0523
LNX4(-1)	-13.60055	5.644834	-2.409381	0.0257
LNX6	-2.636342	0.765482	-3.444027	0.0026
С	99.91137	34.92112	2.861059	0.0097
@TREND	0.040556	0.017079	2.374574	0.0277
R-squared	0.712255	Mean depend	lent var	13.30742
Adjusted R-squared	0.568382	S.D. dependent var		0.623911
S.E. of regression	·		iterion	1.325590
Sum squared resid	3.360275	Schwarz criterion		1.834424
Log likelihood	-9.546646	Hannan-Quinn criter.		1.491457
F-statistic	4.950587	Durbin-Watson stat		1.827901
Prob(F-statistic)	0.001166			

*Note: p-values and any subsequent tests do not account for model selection.

المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (12Eviews).

اختبار التكامل المشترك باستخدام اختبار الحدود (bounds testing): للتأكد من وجود تكامل مشترك والذي يشير إلى العلاقة التوازني طويلة الأجل بين متغيرات الدراسة سوف يتم اختبار التكامل المشترك باستخدام اختبار الحدود، إذ يعتمد على اختبار إحصاءه (F-Statistic) إذ نرفض الفرضية المعدمية ($H_0:b=0$) القائلة بوجود تكامل مشترك بين متغيرات الأنموذج مقابل الفرضية البديلة ($H_1:b\neq 0$) بوجود تكامل مشترك بين المتغيرات، يتبين من الجدول رقم (5) نلاحظ إن قيمة (7) المحتسبة قد بلغت (10.49) وهي أكبر ($H_1:b\neq 0$) الجدولية عند الحدين (الحد الأدنى والحد الأعلى)، وهذا يعني إننا نرفض فرضية العدمية ($H_0:b=0$) ونقبل الفرضية البديلة ($H_1:b\neq 0$) أي وجود علاقة توازنيه طويلة المدى (تكامل مشترك) بين المتغيرات قيد الدراسة. 1993: (Banerjee et al, 1993:

جدول (5): نتائج اختبار التكامل المشترك باستخدام اختبار الحدود (bounds testing)

F-Bounds Test	Null Hypothesis: No levels relationship						
Test Statistic	Value	Signif.	I(0)	I(1)			
		Asymptotic: n=1000					
F-statistic	10.49552	10%	2.75	3.79			
k	5	5%	3.12	4.25			
		2.5%	3.49	4.67			
		1%	3.93	5.23			

المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (Eviews12).

تقدير وتفسير أنموذج العلاقة قصيرة وطويلة الاجل وفقا لأنموذج (ARDL): ونلاحظ من خلال الجدول رقم (6) أنّ معلمة المتغير المستقل معدل سقوط الامطار السنوية (ملم/سنة) (1LnX) قد بلغت (0.233)، وهذا يعني وجود علاقة طردية بين معدل سقوط الأمطار السنوية وانتاج الشعير، أي أن زيادة معدل سقوط الامطار بنسبة (1%) يؤدي إلى زيادة إنتاج الشعير بنسبة (0.233%) وكان هذا المتغير معنوي عند مستوى احتمالية (3%)، أما في المدى الطويل قد بقيت العلاقة الطردية بين معدل سقوط الأمطار وانتاج الشعير. (30.2021:78)

أما معلمة المتغير المستقل معدل درجات الحرارة السنوية (درجة مئوية) (2LnX) قد بلغت (1.207)، وهذا يعني وجود علاقة عكسية بين درجة الحرارة السنوية وانتاج الشعير، أي أن زيادة معدل درجة الحرارة السنوية بنسبة (1%) يؤدي إلى انخفاض إنتاج الشعير بنسبة (1.207%) وهذا مخالف للمنطق الاقتصادي وإن هذا المتغير لم يكن معنوي عند مستوى احتمالية (5%)، أما في المدى الطويل نلاحظ عدم معنوية المتغير. (2072 -2067: 2009: 2009) وهذا يعني وجود ونلاحظ أنّ معلمة المتغير المستقل معدل الرطوبة (%) ((LnX_3)) بلغت (6.553)، وهذا يعني وجود علاقة طردية بين معدل الرطوبة وانتاج الشعير، أي أن زيادة معدل الرطوبة بنسبة (1%) سيؤدي إلى زيادة إنتاج الشعير بنسبة (553)%) وجاء ذلك مطابق المنطق الاقتصادي وكان هذا المتغير

معنوي عند مستوى احتمالية (1%)، أما في المدى الطويل نلاحظ أن العلاقة بين معدل الرطوبة وانتاج الشعير علاقة طردية. (270-263-2014)

وتبين أنّ معلمة المتغير المستقل معدل سرعة الرياح (كم/ساعة) ($_4$ LnX) بلغت (15.568)، وهذا يعني وجود عكسية بين معدل سرعة الرياح ($_4$ كم/ساعة) وانتاج الشعير، أي أن زيادة معدل سرعة الرياح ($_4$ كم/ساعة) بنسبة ($_4$ 80) سيؤدي إلى انخفاض انتاج الشعير بنسبة ($_4$ 80) وجاء ذلك مطابق المنطق الاقتصادي أظهرت معنوية هذا المتغير عند مستوى احتمالية ($_4$ 80)

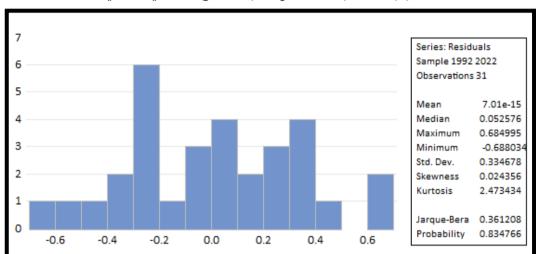
وتبين أنّ معلمة المتغير المستقل انبعاثات غاز ثنائي اكسيد الكاربون (كيلو طن) (LnX₆LnX₆ بلغ (2.636-)، وهذا يعني وجود عكسية بين انبعاثات غاز ثنائي اكسيد الكاربون (كيلو طن) وانتاج الشعير، أي أن زيادة انبعاثات غاز ثنائي اكسيد الكاربون (كيلو طن) بنسبة (1%) سيؤدي إلى انخفاض انتاج الشعير بنسبة (2.636%) وجاء ذلك مطابق للمنطق الاقتصادي ومعنوي عند مستوى احتمالية (1%) أما في المدى الطويل قد بقيت العلاقة عكسية ومعنوية. (Ainsworth, & Long, أما في المدى الطويل قد بقيت العلاقة عكسية ومعنوية. (2005: 537-

جدول (43) تقدير أنموذج تصحيح الخطأ والعلاقة قصيرة وطويلة المدى وفقا لأنموذج (ARDL)

Conditional Error Correction Regression									
Variable	Variable Coefficient Std. Error t-Statistic Prob.								
C @TREND LNY(-1)* LNX1** LNX2** LNX3(-1) LNX4(-1) LNX6** D(LNY(-1)) D(LNX3) D(LNX4)	99.91137 0.040556 -1.912614 0.233753 -1.207000 9.574997 -29.16951 -2.636342 0.887199 6.553386 -15.56896	34.92112 0.017079 0.263757 0.094053 4.114946 2.538812 11.03091 0.765482 0.174234 2.171155 7.546728	2.861059 2.374574 -7.251412 2.485341 -0.293321 3.771448 -2.644344 -3.444027 5.091995 3.018387 -2.063008	0.0097 0.0277 0.0000 0.0219 0.7723 0.0012 0.0156 0.0026 0.0001 0.0068 0.0523					

^{*} p-value incompatible with t-Bounds distribution.

^{**} Variable interpreted as Z = Z(-1) + D(Z).

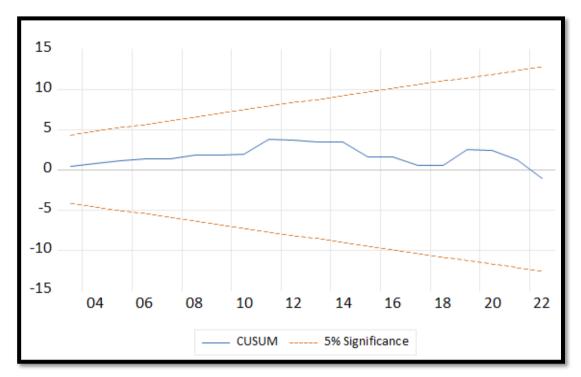

Levels Equation
Case 5: Unrestricted Constant and Unrestricted Trend

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNX1	0.122217	0.040819	2.994096	0.0072
LNX2	-0.631074	2.174477	-0.290219	0.7746
LNX3	5.006237	1.100961	4.547153	0.0002
LNX4	-15.25113	5.167359	-2.951436	0.0079
LNX6	-1.378398	0.351670	-3.919582	0.0008

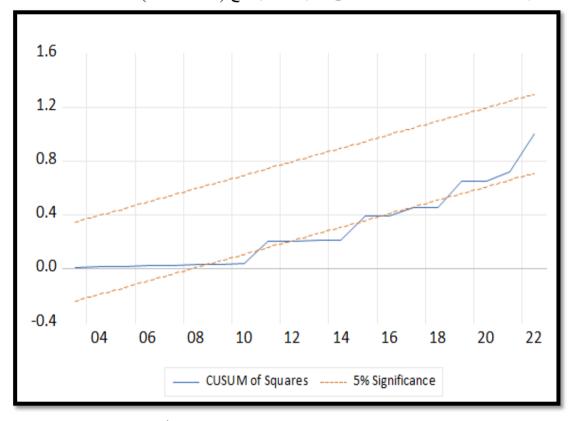
EC = LNY - (0.1222*LNX1 -0.6311*LNX2 + 5.0062*LNX3 -15.2511*LNX4 -1.3784*LNX6)

المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (12Eviews).

اختبار التوزيع الطبيعي للبواقي (JB Jarque-Bera): للتأكد من التوزيع الطبيعي لبواقي معادلة الانحدار حيث يتم استخدام اختبار (JB)، إذ بين الشكل رقم (4) أن معادلة الانحدار موزعة توزيعاً طبيعيا، وبأن قيمة (JB) بلغت (0.361) عند مستوى احتمالية بلغت (0.834) وهي مستوى احتمالية أكبر من (5%) وعليه نقبل فرضية العدم القائل بأن بواقي الأنموذج موزعة توزيعاً طبيعيا. (Clements, & Hendry, 2009: 331-335)



شكل (4) اختبار (Jarque-Bera) للتوزيع الطبيعي للبواقي


المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (10Eviews).

اختبار استقراريه الأنموذج المقدر باستعمال اختبار ARDL): يعد اختبار الاستقرارية الهيكلية لنموذج (ARDL) المقدر للعلاقة قصيرة وطويلة المدى، باستخدام اختبار المجموع التراكمي للبواقي (CUSUM)، وكذلك المجموع التراكمي لمربع البواقي (CUSUM sum of Squares) من أهم الاختبارات في هذا المجال لأنّهما يوضحان أمرين مهمين وهما التأكد من خلو البيانات المستخدمة في الدراسة من عدم وجود أي تغيرات هيكلية فيها، ومدى انسجام واستقرار المعلمات قصيرة المدى مع المعلمات طويلة المدى، أن مثل هذه الاختبارات دائما ما تكون ملازمة لأنموذج الانحدار الذاتي للإبطاء الموزع (ARDL)، فإذا كان الرسم البياني لكل من الاختبارين داخل إطار الحدود الحرجة عند مستوى (5)% يعني أن جميع المعلمات المقدرة ساكنة ولا يوجد تغير هيكلي فيها، يوضح الشكل رقم (5) المجموع التراكمي للبواقي، أن الشكل البياني وقع ضمن الحدود الحرجة عند مستوى معنوية (5%) وهذا يعني عدم وجود تغيرات هيكلية وانسجام المعلمات طويلة المدى مع المعلمات قصيرة المدى.

اتضح من خلال الشكل رقم (6) المجموع التراكمي لمربع البواقي (CUSUM Sq) إن المعلمات كانت مستقرة عبر المدة قيد الدراسة إلا أنها خرجت عن الحدود الحرجة عن مستوى (5%) في بعض السنوات، وهذا يدل على حدوث تغيرات هيكلية في جانب بيانتات انتاج الشعير (20mway, R. H., & Stoffer, 2017: 427- 440)

شكل (5) اختبار CUSUM لاستقراريه الأنموذج المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (12Eviews).

شكل (6): اختبار CUSUM Sq لاستقراريه الأنموذج المصدر: من إعداد الباحث بالاعتماد على مخرجات برنامج (12Eviews).

- استنادًا إلى البيانات الواردة عن واقع إنتاج محصول الشعير في العراق للمدة من 1990 إلى 2022، يمكن استخلاص بعض الاستنتاجات المهمة:
- 1. التذبذب في المساحات المزروعة للشعير بسبب عوامل مناخية واقتصادية وسياسية، مثل قلة الأمطار وتغير السياسات الزراعية.
- 2. التغيرات المناخية، خاصة قلة الأمطار وارتفاع الحرارة، أثرت بشكل كبير على الإنتاجية، كما حدث في 2018.
- 3. القرارات الاقتصادية والسياسية في دعم الأسعار ساعد في زيادة المساحات المزروعة في بعض السنوات، بينما تراجعت في سنوات أخرى بسبب الأزمات الاقتصادية والأمنية، مثل 2011.
- 4. أهمية محافظة صلاح الدين المحافظة إذ شهدت تقلبات كبيرة في المساحات المزروعة، وكانت تمثل نسبة كبيرة في بعض السنوات مثل 1991.
- 5. زيادة الإنتاجية، ارتفعت الإنتاجية في سنوات مثل 1991 بسبب الظروف المناخية المثالية، بينما تراجعت في سنوات الجفاف.
- 6. التنوع الزراعي، الفلاحون اتجهوا لزراعة محاصيل أخرى مثل القمح في السنوات غير المناسبة للشعير.
 - 7. العلاقة طويلة الأجل، هناك علاقة طويلة الأجل بين العوامل المناخية وإنتاج الشعير.
- 8. تأثير العوامل المناخية، زيادة الأمطار 1% تزيد الإنتاج 0.233%، بينما ارتفاع الحرارة يقلل الإنتاج، والرطوبة وسرعة الرياح تؤثران بشكل كبير.
- 9. استقرار النموذج، أظهرت اختبارات الاستقرار أن النموذج مستقر، مع بعض التغيرات الهيكلية بسبب العوامل الخارجية.
- 10. تأثير التغيرات المناخية، التغيرات المناخية، مثل ارتفاع الحرارة وتقلبات الأمطار، تؤثر بشكل كبير على الإنتاج الزراعي في العراق.

التوصيات:

- 1. تحسين إدارة الموارد المائية، التركيز على بناء السدود وتعزيز تقنيات الري المستدامة لضمان استمرارية توفر المياه في ظل التغيرات المناخية.
- 2. تبني تقنيات زراعية مقاومة للتغيرات المناخية **: تشجيع البحث في تحسين أصناف الشعير المقاومة للجفاف ودرجات الحرارة العالية.
- 3. تعزيز التحليل البيئي والتنبؤات المناخية، تضمين التنبؤات المناخية في التخطيط الزراعي لمساعدة المزار عين في اتخاذ قرارات أفضل.
- 4. تحسين السياسات الزراعية، مرونة السياسات الزراعية مع التغيرات المناخية، مثل تقديم دعم أو تأمينات ضد المخاطر المناخية.
- قليل انبعاثات الكربون، تقليل انبعاثات CO2 من خلال تقنيات زراعية صديقة للبيئة واستخدام الطاقة المتجددة.
- 6. تطوير استراتيجيات مرونة للمزار عين، توفير تدريب على الزراعة المستدامة واستخدام التكنولوجيا لتحسين الإنتاج الزراعي.

المصادر

اولاً. المصادر العربية:

- 1. صالح، سعد صالح خضر عبيد العلاقة بين العوامل الجغرافية وانتاجية المحاصيل الزراعية في قضاء سنجار، رسالة ماجستير (غير منشورة)، كلية التربية جامعة الموصل 2011.
- 2. العامري، اسماعيل داود سليمان، التباين المكاني لخصائص التربة في ناحيتي بهزر وبني سعد وعلاقاتها المكانية بالمناخ والموارد المائية، رسالة ماجستير، كلية التربية /ابن رشد، جامعة بغداد، 2005.
- 3. عبد العال، مروه وسام، التباين المكاني لخصائص المياه الجوفية في محافظة كربلاء وعلاقتها بالاستخدامات البشرية، رسالة ماجستير، كلية الأداب، جامعة الكوفة، 2013.
- 4. مراد إسماعيل احمد، التغير المكاني لاستعمالات الارض الزراعية في محافظة كركوك بين سنتي (2003-2003)، رسالة ماجستبر، كلبة التربية، جامعة المستنصرية، 2005.
- 5. المسعودي، هاني جابر محسن، التمثيل الخرائطي لاستعمالات الارض الزراعية في محافظة كربلاءل عام 2011، رسالة ماجستير، كلية التربية للبنات، جامعة الكوفة، 2013..
- 6. منصور، عبد الكريم قاسم، تحليل اقتصادي للمحفزات النسبية لإنتاج التمور في العراق للمدة (2000–2000)، رسالة ماجستير، كلية الزراعة، جامعة بغداد، 2006.
- 7. النافعي، وسيم عبد الواحد، التحليل المكاني لخصائص السكان النشطين اقتصاديا في محافظة كربلاء المقدسة للمدة من (1997-2011)، رسالة ماجستير، كلية الأداب، جامعة القادسية، 2013. ثانياً المصادر الأحنيية:
- 1. Ainsworth, E. A., and Long, S. P. (2005): "What have we learned from 15 years of free-air CO2 enrichment (FACE)?" New Phycologist: Ainsworth, E. A., and Long, S. P., 2005.
- 2. aum, C. F. (2006). "An Introduction to Modern Econometrics Using Stata." Stata Press. Book, How to Use Stata to Perform Time Series Analysis Using the ARDL Model.
- 3. Banerjee, A., Dolado, J. J., Galbraith, J. W., & Hendry, D. F. (1993). "Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. "Advanced Texts in Econometrics.
- 4. (Chapter on CUSUM tests for structural stability).
- 5. FAO (2021): "The State of Food and Agriculture 2021: Climate Change, Agriculture and Food Security.", 2021.
- 6. Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). "Bounds testing approaches to the analysis of level relationships." Journal of Applied Econometrics, 16(3).
- 7. Ryu, Y., et al. (2020): "Impact of wind speed on crop production: a case study of wind-induced crop loss." Field Crops Research.: Ryu, Y., et al., 2020.
- 8. Schlenker, W., and Roberts, M. J. (2009): "Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change." Proceedings of the National Academy of Sciences.

- 9. The Oxford Handbook of Applied Econometrics" by Mike P. Clements & David F. Hendry: Clements, M. P., & Hendry, D. F. (2009). The Oxford Handbook of Applied Econometrics.
- 10. Title: Time Series Analysis and Its Applications: With R Examples Springer.
- 11. umway, R. H., & Stoffer, D. S. (2017).
- 12. Wang, T., et al. (2014): "The effects of relative humidity on the growth and yield of crops." Agricultural and Forest Meteorology. Wang, T., et al., 2014.