Main Article Content

Kurdistan Ibrahim Mawlood [email protected]
Hogr Muhammed Qader [email protected]


Abstract

The study aimed to estimate the effects of prognostic factors on tuberculosis (TB) survival. Two models have been studied (Logistic model and Cox regression models) in survival analysis.


            Kaplan Meier has been applied to estimate the hazard function. The Kaplan Meier curve has been used to show the risks of dyeing of the factors in this study of tuberculosis data set. The data was obtained from Kurdistan Regional Government, Iraq /Ministry of health/General Directorate of Health, Hawler/Chest and Respiratory disease Center, in period 11th January 2015 through 23th November 2019 of all tuberculosis patients followed up by the hospital until 14th April 2020. Kaplan Meier estimator results indicates that in the factor X-ray result TB has the highest value of estimated mean time until death, the Kaplan Meier curves are clearly indicated that the risk of dying increased with the time especially after 15 months. The logistic regression model identifies that (Gender, Chest symptoms, Type of patient, Site of TB, Transpupillary thermotherapy (TTT-outcome)) are the prognostic factors that influence in tuberculosis survival. Moreover, the Cox regression model identifies that (Age group, Gender, Site of TB, TTT-outcome) are the most common factors that have an impact on tuberculosis.


            Logistic regression model was selected to be the best model for our study data of tuberculosis by using the criterions; Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) to comparing two models. It's worth mentioning; the results obtained by utilizing the statistical packages in Mat-lab and SPSS V.25, which was used to analyze our study data.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mawlood, K. I., & Qader, H. M. (2021). Estimating Hazard Function and Survival Analysis of Tuberculosis Patients in Erbil city. Tikrit Journal of Administrative and Economic Sciences, 17(54, 3), 473–492. https://doi.org/10.25130/tjaes.17.54.3.30
Section
Articles

References

ARCHER, K. J. & LEMESHOW, S., 2006, Goodness-of-fit test for a logistic regression model fitted using survey sample data. The Stata journal, 6(No.1), pp. 97-105.

BALAKRISHNAN, N. & RAO, C. R., 2004, Handbook of Statistics 23- Advances in Survival Analysis. north holand: s.n.

EKMAN, A., 2017, Variable selection for the Cox proportional hazards model. Umea university, 21 January.p. 84.

FOX, J., 2014, Introduction to Survival analysis. sociology 761.

FRANK E. HARRELL, I., 2001, regression modeling strategies. 1 ed. New York: Springer Science.

GUO, S., 2010, Survival analysis. 1st ed. New York: Oxford university press, Inc.

HARRELL, F. E., 2001, Regression Modeling With Applications to Linear Models, Logistic Regression, and Survival Analysis. Nashville, TN 37232-2637: Springer Science+Business Media New York.

HEAGERTY, P., 2005, Survival Analysis. new work: Va/Uw Summer.

HOSMER, D. W. & LEMESHOW, S., 2000, applied logistic regression. 2nd ed. canada: Wiley & Sons, inc..

HOSMER, D. W., LEMESHOW, S. & MAY, S., 2008, Applied Survival Analsis: Regression Modeling of Time to Event Data. 2nd ed. canada: John wiley & sons, Inc.

HOUT, A. V. D., 2017, multi-state survival models for interval censored data. U.S.: taylor & francis group.

JONY, 2016. how to. 4 ed. iraq: afsana.

KOROSTELEVA, O., 2008, Clinical Statistics-Introducing Clinical Trials, Survival Analysis, and Longitudinal Data Analysis. 1st ed. USA: Jones and Bartlett Series in Mathematics.

LEE, E. T. & WANG, J. W., 2003, Statistical Methods for survival data analysis. 2nd ed. NEW YORK: Wiley & Sons, Inc.

LIU, X., 2012, Survival analysis 'models and applications'. 1st ed. united kingdom: John Wiley & Sons Ltd.

LOKESHMARAN A, &. ,. R. E., 2013, BAYESIAN VARIABLE SELECTION FOR COX’S REGRESSION MODEL. Asia Pacific Journal of Research, pp. 11 - 23.

MARK, S., 2007, An Introduction to Survival Analysis. EpiCentre, IVABS, pp. 2-31.

MAWLOOD, K. I., 2019, Using Logistic Regression and Cox Regression Models to Studying the Most Prognostic Factors for Leukemia patients. QALAAI ZANIST SCIENTIFIC JOURNAL, 4(2), pp. 705-724.

MCDONALD, J. H., 2014, Handbook of Biological Statistics. 3rd ed. USA: Sparky house publishing.

MOORE, D. F., 2016, Applied Survival Analysis Using R. Switzerland: springer international publishing.

SCHMIDT, P. & WITTE, A. D., 1998, Predicting Recidivism Using Survival Models. 1st ed. London: Springer verlag.

WIENKE, A., 2011, Frailty models in survival analysis. 1st ed. USA: Taylor & Francis group, LLC.

XIN, X., 2011, A Study of ties and Time-Varying Covariates in Cox Proportional Hazards Model. University of Guelph,, pp. 1-43.

المصادر العربية:

التلباني، ش، 2011، دراسة مقارنة بين نموذج الانحدار اللوجيستي ونموذج انحدار كوكس لدراسة أهم العوامل الاقتصادية والديموغرافية المؤثرة على معرفة واتجاهات الشباب نحو قضايا الصحة الإنجابية، رسالة دكتوراه غير منشوره، جامعة أبو بكر بلقايد، تلمسان، الجزائر.

فتيحة، ب.، 2015، COX تقدير مدة البحث عن الشغل لحاملي شهادات تكوين المهني باستعمال نموذج الأخطار النسبية، مجلة العلوم الاقتصاد والتسيير والتجارة (جامعة بغداد)، ص11-33.