Main Article Content

Rafal Abdulhameed Saeed [email protected]
Nazar K. Hussein [email protected]


Abstract

In recent years, the Marine Predator Algorithm (MPA) has emerged as a powerful tool in the field of metaheuristic optimization, an algorithm inspired by the behavior of marine predators in the natural environment. This algorithm is based on three main strategies to simulate what happens between predators and prey, which gives a strong balance between the exploration process and the exploitation process. This paper attempts to review the most important improvements, modifications and applications of the MPA algorithm in several fields. Compared to algorithms such as PSO, SMA and other algorithms, MPA has proven its effectiveness and strength, especially in improving the speed and accuracy in reaching optimal solutions. Despite its successes, MPA faces some challenges in certain problems, such as the need for additional modifications to improve its performance in more complex environments. In this context, we discuss future directions for developing this algorithm and expanding its use in new fields.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rafal Abdulhameed Saeed, & Nazar K. Hussein. (2025). Marine Predator Algorithm MPA Review: Marine Predator-Inspired Optimization and Its Applications to Optimization Problems. Tikrit Journal of Administrative and Economic Sciences, 21(70 part 1), 40–63. https://doi.org/10.25130/tjaes.21.70.1.3
Section
Articles

References

Abd Elaziz, M., Thanikanti, S. B., Ibrahim, I. A., Lu, S., Nastasi, B., Alotaibi, M. A., Hossain, M. A., & Yousri, D. (2021). Enhanced Marine Predators Algorithm for identifying static and dynamic Photovoltaic models parameters. Energy Conversion and Management, 236, 113971. https://doi.org/10.1016/j.enconman.2021.113971

Abdel-Basset, M., El-Shahat, D., Chakrabortty, R. K., & Ryan, M. (2021). Parameter estimation of photovoltaic models using an improved marine predators algorithm. Energy Conversion and Management, 227, 113491. https://doi.org/10.1016/j.enconman.2020.113491

Abualigah, L., Al-Okbi, N. K., Elaziz, M. A., & Houssein, E. H. (2022). Boosting Marine Predators Algorithm by Salp Swarm Algorithm for Multilevel Thresholding Image Segmentation. Multimedia Tools and Applications, 81(12), 16707–16742. https://doi.org/10.1007/s11042-022-12001-3

Ahmadianfar, I., Gong, W., Heidari, A. A., Golilarz, N. A., Samadi-Koucheksaraee, A., & Chen, H. (2021). Gradient-based optimization with ranking mechanisms for parameter identification of photovoltaic systems. Energy Reports, 7, 3979–3997.

Al-Betar, M. A., Awadallah, M. A., Makhadmeh, S. N., Alyasseri, Z. A. A., Al-Naymat, G., & Mirjalili, S. (2023). Marine predators algorithm: A review. Archives of Computational Methods in Engineering, 30(5), 3405–3435.

Al-qaness, M. A. A., Ewees, A. A., Fan, H., Abualigah, L., & Elaziz, M. A. (2022). Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting. Applied Energy, 314, 118851. https://doi.org/10.1016/j.apenergy.2022.118851

Bakır, H. (2024). Enhanced artificial hummingbird algorithm for global optimization and engineering design problems. Advances in Engineering Software, 194, 103517. https://doi.org/10.1016/j.advengsoft.2024.103671

Cang, H., Zeng, X., & Yan, S. (2024). A novel grey multivariate convolution model based on the improved marine predators algorithm for predicting fossil CO2 emissions in China. Expert Systems with Applications, 243, 122865. https://doi.org/10.1016/j.eswa.2023.122865

Chun, Y., Hua, X., Qi, C., & Yao, Y. X. (2024). Improved marine predators algorithm for engineering design optimization problems. Scientific Reports, 14(1), 13000. https://doi.org/10.1038/s41598-024-63826-x

Chung, H.-Y., Ye, Y.-A., Chang, J.-K., & Hou, C.-C. (2014). Multi-objects tracking based on HPSO-TVAC algorithm with searching window in real time. 2014 International Conference on Fuzzy Theory and Its Applications (IFUZZY2014), 41–46.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. Proceedings of the First European Conference on Artificial Life, 142, 134–142.

Dinh, P. H. (2023). A Novel Approach Based on Marine Predators Algorithm for Medical Image Enhancement. Sensing and Imaging, 24(1), 6. https://doi.org/10.1007/s11220-023-00411-y

Fan, Q., Huang, H., Chen, Q., Yao, L., Yang, K., & Huang, D. (2022). A modified self-adaptive marine predators algorithm: framework and engineering applications. Engineering with Computers, 38(4), 3269–3294. https://doi.org/10.1007/s00366-021-01319-5

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190.

Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’m, A.-Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.

Filmalter, J. D., Capello, M., Deneubourg, J.-L., Cowley, P. D., & Dagorn, L. (2013). Looking behind the curtain: quantifying massive shark mortality in fish aggregating devices. Frontiers in Ecology and the Environment, 11(6), 291–296.

Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., & Fister, D. (2013). A brief review of nature-inspired algorithms for optimization. ArXiv Preprint ArXiv:1307.4186.

Gao, Z., Zhuang, Y., Chen, C., & Wang, Q. (2023). Hybrid modified marine predators algorithm with teaching-learning-based optimization for global optimization and abrupt motion tracking. Multimedia Tools and Applications, 82(13), 19793–19828. https://doi.org/10.1007/s11042-022-13819-7

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. 3 (2): 95-99. Kluwer Academic Publishers-Plenum Publishers.

Gong, R., Li, D. L., Hong, L. La, & Xie, N. X. (2024). Task scheduling in cloud computing environment based on enhanced marine predator algorithm. Cluster Computing, 27(1), 1109–1123. https://doi.org/10.1007/s10586-023-04054-2

Han, B., Li, B., & Qin, C. (2023). A novel hybrid particle swarm optimization with marine predators. Swarm and Evolutionary Computation, 83, 101375. https://doi.org/10.1016/j.swevo.2023.101375

Hassan, M. H., Daqaq, F., Selim, A., Domínguez-García, J. L., & Kamel, S. (2023). MOIMPA: multi-objective improved marine predators algorithm for solving multi-objective optimization problems. Soft Computing, 27(21), 15719–15740. https://doi.org/10.1007/s00500-023-08812-7

Hassan, M. H., Yousri, D., Kamel, S., & Rahmann, C. (2022). A modified Marine predators algorithm for solving single- and multi-objective combined economic emission dispatch problems. Computers and Industrial Engineering, 164, 107906. https://doi.org/10.1016/j.cie.2021.107906

Houssein, E. H., Hussain, K., Abualigah, L., Elaziz, M. A., Alomoush, W., Dhiman, G., Djenouri, Y., & Cuevas, E. (2021). An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowledge-Based Systems, 229, 107348. https://doi.org/10.1016/j.knosys.2021.107348

Houssein, E. H., Ibrahim, I. E., Kharrich, M., & Kamel, S. (2022). An improved marine predators algorithm for the optimal design of hybrid renewable energy systems. Engineering Applications of Artificial Intelligence, 110, 104722. https://doi.org/10.1016/j.engappai.2022.104722

Hu, G., Zhu, X., Wang, X., & Wei, G. (2022). Multi-strategy boosted marine predators algorithm for optimizing approximate developable surface. Knowledge-Based Systems, 254, 109615. https://doi.org/10.1016/j.knosys.2022.109615

Islam, M. R., Ali, S. M., Fathollahi-Fard, A. M., & Kabir, G. (2021). A novel particle swarm optimization-based grey model for the prediction of warehouse performance. Journal of Computational Design and Engineering, 8(2), 705–727.

Jia, H., Sun, K., Li, Y., & Cao, N. (2022). Improved marine predators algorithm for feature selection and SVM optimization. KSII Transactions on Internet and Information Systems, 16(4), 1128–1145. https://doi.org/10.3837/tiis.2022.04.003

Jin, Z., Jiang, J., Kong, Z., Pan, C., & Ruan, X. (2024). A Novel Coverage Optimization Scheme Based on Enhanced Marine Predator Algorithm for Urban Sensing Systems. IEEE Sensors Journal, 24(5), 5486–5499. https://doi.org/10.1109/JSEN.2023.3287582

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459–471.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks, 4, 1942–1948.

Kirkpatrick, S. (1983). Improvement of reliabilities of regulations using a hierarchical structure in a genetic network. Science, 220, 671–680.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323.

Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.

Lin, L., & Gen, M. (2009). Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Computing, 13, 157–168.

Liu, J., Li, L., & Liu, Y. (2024). Enhanced marine predators algorithm optimized support vector machine for IGBT switching power loss estimation. Measurement Science and Technology, 35(1), 15035. https://doi.org/10.1088/1361-6501/ad042b

Luo, H., Chen, J., Sun, Z., Zhang, Y., & Zhang, L. (2024). Improved Marine Predators Algorithm Optimized BiGRU for Strip Exit Thickness Prediction. IEEE Access, 12, 56719–56729. https://doi.org/10.1109/ACCESS.2024.3389489

Mirjalili, S., Mirjalili, S., software, A. L.-A. in engineering, & 2014‏, undefined. (n.d.). Grey wolf optimizer‏. Elsevier‏. https://doi.org/10.1016/j.advengsoft.2013.12.007

Oszust, M. (2021). Enhanced Marine Predators Algorithm with Local Escaping Operator for Global Optimization. Knowledge-Based Systems, 232, 107467. https://doi.org/10.1016/j.knosys.2021.107467

Qin, C., & Han, B. (2023). Multi-Stage Improvement of Marine Predators Algorithm and Its Application. CMES - Computer Modeling in Engineering and Sciences, 136(3), 3097–3119. https://doi.org/10.32604/cmes.2023.026643

Rai, R., Dhal, K. G., Das, A., & Ray, S. (2023). An inclusive survey on marine predators algorithm: Variants and applications. Archives of Computational Methods in Engineering, 30(5), 3133–3172.

Rezaei, K., & Fard, O. S. (2024). Multi-strategy enhanced Marine Predators Algorithm with applications in engineering optimization and feature selection problems. Applied Soft Computing, 159, 111650. https://doi.org/10.1016/j.asoc.2024.111650

Sayarshad, H. R., Javadian, N., Tavakkoli-Moghaddam, R., & Forghani, N. (2010). Solving multi-objective optimization formulation for fleet planning in a railway industry. Annals of Operations Research, 181, 185–197.

Shaheen, A. M., Hamida, M. A., Alassaf, A., & Alsaleh, I. (2024). Enhancing parameter identification and state of charge estimation of Li-ion batteries in electric vehicles using an improved marine predators algorithm. Journal of Energy Storage, 84, 110982. https://doi.org/10.1016/j.est.2024.110982

Storn, R., & Price, K. (1996). Minimizing the real functions of the ICEC’96 contest by differential evolution. Proceedings of IEEE International Conference on Evolutionary Computation, 842–844.

Tu, Q., Chen, X., & Liu, X. (2019). Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing, 76, 16–30.

Wang, G.-G., & Tan, Y. (2017). Improving metaheuristic algorithms with information feedback models. IEEE Transactions on Cybernetics, 49(2), 542–555.

Yang, W., Zhu, X., Xiao, Q., & Yang, Z. (2023). Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles. Energy, 282, 128901. https://doi.org/10.1016/j.energy.2023.128901

Yousri, D., Ousama, A., shaker, Y., Fathy, A., Babu, T. S., rezk, H., & Allam, D. (2022). Managing the exchange of energy between microgrid elements based on multi-objective enhanced marine predators algorithm. Alexandria Engineering Journal, 61(11), 8487–8505. https://doi.org/10.1016/j.aej.2022.02.008

Yuwei, L., Li, L., & Jiaqi, L. (2024). Hybrid scheduling strategy and improved marine predator optimizer for energy scheduling in integrated energy system to enhance economic and environmental protection capability. Renewable Energy, 228, 120641. https://doi.org/10.1016/j.renene.2024.120641

Zhang, H., Wang, X., Zhang, J., Ge, Y., & Wang, L. (2024). MPPT control of photovoltaic array based on improved marine predator algorithm under complex solar irradiance conditions. Scientific Reports, 14(1), 19745. https://doi.org/10.1038/s41598-024-70811-x

Zhang, J., & Xu, Y. (2023). Training Feedforward Neural Networks Using an Enhanced Marine Predators Algorithm. Processes, 11(3), 924. https://doi.org/10.3390/pr11030924

Zhao, W., Shi, T., Wang, L., Cao, Q., & Zhang, H. (2021). An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor. Journal of Computational Design and Engineering, 8(5), 1204–1233.