Comparison between the Bayesian method and the Particle Swarm Algorithm for Estimating a Spatial Autoregressive Model
Main Article Content
Abstract
The spatial autoregressive model is one of the models that is very similar to ordinary time series models, as the spatial mixed model is formed when the spatially lagged dependent variable is included as one of the explanatory variables. To find out whether or not there is spatial dependence between these variables, a spatial autoregressive model is used Moran Test. If this reliability is ignored or not taken into consideration, this leads to the loss of important information. Accordingly, in the research, the spatial autoregressive model was estimated when the model error is distributed with a mixed distribution (represented by the t-distribution) by the Bayesian method when the initial information is available from one side of the artificial intelligence algorithm, represented by the Particle Swarm Optimization (PSO) algorithm from On the other hand, the application to real data related to the poverty gap sample in developing countries for the years (2005-2010-2015-2020) and through the Moran test and the Lagrange multiplier showed that there is a spatial autocorrelation between the observations and the researchers concluded that the subsequent probability distribution of the vector of parameters (▁θ) follows a multivariate t distribution, and the posterior probability distribution of the variance parameter was an uncommon but appropriate distribution (Proper), in addition to the superiority of the PSO algorithm for estimating the spatial autoregressive model with heavy tails in the Bayesian manner through the criteria of mean square error and mean relative error.
Downloads
Article Details
References
اولاً. المصادر العربية:
ابو الشعير، محمود جواد والصراف، نزار مصطفى، (2018)، الانحدار الخطي: رؤئ من القاعدة الى القمة. مطبعة عبدالسلام، الطبعة الاولى، كلية الرافدين الجامعة، العراق.
الخطاب، اوس علي (2024).قياس وتحليل اثر بعض مؤشرات الشمول المالي على الفقر عينة من الدول النامية انموذجاً للمدة 2005-2020. مجلة الريادة للمال والاعمال، 5(1)، 174-184.
علي، عمر عبدالمحسن وهادي، سوسن قاسم، (2014)، تقدير نماذج الانحدار الحيزي لنسب الفقر في اقضية العراق للعام 2012. مجلة العلوم الاقتصادية والادارية،20(79)،337-351.
ثانياً. المصادر الأجنبية:
Anselin, L., (2001(, Spatial Econometrics. in Baltagi B.H. (ed), A companion to Theoretical Econometrics, Blackwell publisher, Oxford, (310- 330).
Basile, R., (2011), Some notes on spatial statistics and spatial econometrics. second university of naples, capua, rome.
Bechmann, A. L. C. F., (2016), Estimating an Inverse Gamma distribution. stat,arXiv:1605.01019v2.
Box, G. P. & Tiao, G. C., (1973), Bayesian Inference in Statistical Analysis. Addison Wesley publishing company, Inc. London, U.K.
Gan, J., (2009), Spatial Combination Interpolation model based on panal data and its empirical study. school of management, Fuzhou university (or Fujian institute of economics and management) Fuzhou 350002, china.
Hao, Q., (2008), Review on Spatial Econometric Analysis. School of Management, Tianjin University, Tianjin, 300072, China.
Kibria, B. M. G & Joarder, A. H., (2006), Short Review of Multivariate t-Distribution. Journal of Statistical Research, 40(1), 59-72.
Lesage, J. P., (2004), Lecture 1: Maximum Likelihood estimation of spatial regression model. University of Toledo.
Paraguas, F. & Anton, (2005), Spatial Econometrics Modeling of Poverty. proceedings of the 8th WSEAS international conference on applied mathematics, Tenerife, Spain, 159-164.
Satapath, S.C. Murthy, J.V.R. & Reddy, P.V.G.D., (2009), Particle swarm optimized multiple regression linear model for data classification. Journal of Applied Soft Computing, 9(2), 470-476.